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Preface

On the one hand, in almost all the scientific areas, from physical to social
sciences, biology to economics, from meteorology to pattern recognition in
remote sensing, the theory of classical probability plays a major role and on
the other much of our knowledge about the physical world at least is based
on the quantum theory [12]. In a way, quantum theory itself is a new kind of
theory of probability (in the language of von Neumann and Birkhoff) (see for
example [106]) which contains the classical model, and therefore it is natural
to extend the other areas of classical probability theory, in particular the theory
of Markov processes and stochastic calculus to this quantum model.

There are more than one possible ways (see for example [127]) to construct
the above-mentioned extension and in this book we have chosen the one clos-
est to the classical model in spirit, namely that which contains the classical
theory as a submodel. This requirement has ruled out any discussion of areas
such as free and monotone-probability models. Once we accept this quantum
probabilistic model, the ‘grand design’ that engages us is the ‘canonical con-
struction of a *-homomorphic flow (satisfying a suitable differential equation)
on a given algebra of observables such that the expectation semigroup is pre-
cisely the given contractive semigroup of completely positive maps on the said
algebra’.

This problem of ‘dilation’ is here solved completely for the case when the
semigroup has a bounded generator, and also for the more general case (of
an unbounded generator) with certain additional conditions such as symmetry
and/or covariance with respect to a Lie group action. However, a certain amount
of space has to be devoted to develop the needed techniques and structures, and
the reader is expected to be well equipped with the basics of functional analysis,
theory of Hilbert spaces and of operators in them and of probability theory in
order to master these.

A beginner with the above-mentioned background may read Chapters 1 to 6
at first and may leave the rest for a second reading. In some places, mathemat-
ical assertions have been made without proof wherever we felt that the proof
is essentially similar to a detailed proof of an earlier statement or when the
verification of the same can be left as an exercise.

vii



viii Preface

Due to lack of space, not all equations have been displayed and long expres-
sions had to be broken at the end of a line, any inconvenience due to this is
regretted. The open square symbol denotes the end of a proof. The reference list
is far from complete, we have often included only a recent or a representative
paper. We apologize for any unintended exclusion of a reference.

Itisapleasure toremember here people who have contributed to the preparation
of this book. Professor K. R. Parthasarathy was instrumental in introducing us
to the subject and one of us (K.B.S.) has collaborated with him extensively
over nearly two decades; without the insights and masterly expositions of him
and of Professor P. A. Meyer, the subject may not have reached the stage it
is in now. We thank all our friends, collaborators and members of the Q—P
club who have helped us directly or indirectly in this endeavor. In particular,
we must mention Professors Luigi Accardi, Robin Hudson, V. P. Belavkin,
Martin Lindsay, Franco Fagnola, Stephane Attal, Jean-Luc Sauvageot, Burkhard
Kiimmerer, Hans Maassen, Rajarama Bhat and Dr Arup Pal and Dr Partha
Sarathi Chakraborty. We are grateful to the Indian Statistical Institute (both
Delhi and Kolkata campuses) for providing the necessary facilities, Indo-French
Centre for the Promotion of Advanced Research and DST-DAAD agencies for
making many collaborations possible. One of us (D.G.) would like to thank
the Alexander von Humboldt Foundation for a postdoctoral fellowship during
2000-01 (and also later visits under its scheme of ‘resumption of fellowship’),
when part of the work covered by this book was done. We must also thank
Dr Lingraj Sahu, who as a graduate student at a critical stage of writing the
monograph, helped with introduction of a part of the material and Mr Joydip
Jana for help with proofreading. One of the authors (D. G.) dedicates this book
to his wife, Gopa and the youngest addition to his family, expected possibly
before this book sees the light of the day; and acknowledges with gratitude
the constant encouragement and support from his parents, mother-in-law and
Amit-da during the writing of the book.

As is often the case in any such enterprise, some important topics (e.g. stop
times) have been left out. The responsibility for the choice of topics as well as
for any omissions and shortcomings of the text is entirely ours. We can only
hope that this monograph will enthuse some researchers and students to solve
some of the problems left unsolved.

K. B. Sinha
Debashish Goswami
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spaces)
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1

Introduction

The motivations for writing the present monograph are three-fold: firstly from
a physical point of view and secondly from two related, but different mathe-
matical angles.

At the present time our mathematical understanding of a conservative quan-
tum mechanical system is reasonably complete, both from the direction of
a consistent abstract theory as well as from the one of mathematical theo-
ries of applications in many explicit physical systems like atoms, molecules
etc. (see for example the books [12] and [108]). However, a nonconservative
(open/dissipative) quantum mechanical system does not enjoy a similar status.
Over the last seven decades there have been many attempts to make a the-
ory of open quantum systems beginning with Pauli [104]. Some of the typical
references are: Van Hove [126], Ford ef al. [52], along with the mathematical
monograph of Davies [35]. The physicists’ Master equation (or Langevin equa-
tion) was believed to describe the evolution of a nonconservative open quantum
(or classical) mechanical system, a mathematical description of which can be
found in Feller’s book [50].

Physically, one can conceive of an open system as the ‘smaller subsystem’ of
a total ensemble in which the system is in interaction with its ‘larger’ environ-
ment (sometimes called the bath or reservoir). The total ensemble with a very
large number of degrees of freedom undergoes (conservative) evolution, obey-
ing the laws of standard quantum mechanics. However, for various reasons,
practical or otherwise, it is of interest only to observe the system and not the
reservoir, and this ‘reduced dynamics’ in a certain sense obeys the Master equa-
tion (for a more precise description of these, see [35]). Since it is often impos-
sible and impractical to solve the equation of evolution of the total ensemble,
it is often meaningful to replace the reservoir by a ‘suitable stochastic process’
and couple the system with the stochastic process. In the case in which the
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stochastic process is classical, the total evolution can be described by a suit-
able stochastic differential equation (for an introduction to this, the reader is
referred to [75] and [41]). The standard Langevin equation [52] involving the
stochastic process should restore the conservativeness of the total system albeit
for almost all paths. However, in many of the models studied by physicists this
is not so.

The simplest quantum mechanical system is the so-called harmonic oscilla-
tor. However, the (sub-critically) damped harmonic oscillator which has been
studied in classical physics since the time of Newton eludes a consistent treat-
ment in conventional quantum mechanics. In the view of the present authors,
this happens because the damped harmonic oscillator is a nonconservative,
dissipative system and cannot be understood as a flow in a symplectic man-
ifold (classical case) or in a standard Weyl canonical commutation relations
(CCR) algebra (quantum case). One possible way to model this is to repre-
sent the environment or reservoir (responsible for the friction or the damping
term) by an appropriate stochastic process, restore the unitary stochastic evo-
lution of the quantum system and then project back to the ‘system space’ by
‘washing out’ the influence of the stochastic process (taking expectation with
respect to the stochastic part) to get back the required nonconservative dynam-
ics. This has been studied in [119] and has also been described in some detail
in Chapter 7. Thus one can enunciate a philosophy, not too far away from that
of the physicists, that given a nonconservative dynamics of a quantum system,
one aim is to canonically construct the stochastic process which will repre-
sent the environment so that the two together undergo a conservative evolution
and the projection to the system space restores exactly the nonconservative
evolution. There is a further aim of the physicist, viz. to obtain the stochas-
tic process mentioned above in a suitable approximation from the mechanical
descriptions of the particles constituting the reservoir and of their interactions
with the observed system. This aspect is not treated in this monograph and the
reader is referred to [4], [8] and [35].

There is an exact mathematical counterpart to the picture in physicists’ mind
as described above. Given a finite probability space S = {1,2,...,n} with
probability distribution given by the vector p = (p1, p2,..., pn) Onitand a
stochastic (or Markov) matrix (z; j)?jzl such that t;; > 0, Z?:l tij = 1, one
can associate a (discrete) evolution (7 f)(i) Z;le ;i f(j) with
f :{1,2,...,n} = R. Then one observes that

I

(i) T maps positive functions f to positive functions and maps identity func-
tion to itself.

(i) The probability distribution vector p is in one-to-one correspondence
with the dual ¢, of the algebra of functions on S by p +— ¢,, where
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dp(f) = >, pif(i), and this induces a dual dynamics T* given by
(T*¢p)(xj) = iy pitij» where yi denotes the characteristic function
of the singleton set {k}.

(iii) T",n =0,1,...,and T*",n =0, 1, 2. .. provide two discrete (dynami-
cal) semigroups, the second being dual to the first; and clearly 7" for each
n satisfies the property (i).

There is a standard construction of a Markov process (in this case Markov
chain); see e.g. Feller’s book [50]. This procedure extends naturally, begin-
ning with the consideration of the algebra of functions on S as the algebra of
n x n diagonal matrices and {T"},=0,1,2,... as a positive semigroup on that, to
the more general picture considering semigroups (discrete or continuous para-
meter) on the noncommutative algebra of all n x n matrices. What is perhaps
surprising and is contrary to intuition in classical probability is that a very
large class of Markov processes (including Markov chains) can be described
by quantum stochastic differential equations in Fock space, again facilitating
many computations ([99, 100]).

At this point an important generalization of the class of positive maps on
an algebra makes its entrance. From a physical point of view, consider the fol-
lowing scenario. Let H be the Hilbert space of a localized quantum system A
in a box and let there exist another quantum system B with associated Hilbert
space C". The system B is so far removed from A that there is no interac-
tion between A and B and thus the Hilbert space for the joint system A and
B is H ® C". Let T, be the positive linear map which describes an operation
on the joint system that does not affect B, given by T,(x ® y) = T(x) ® y
for x € B(H), y € B(C") (here B(H) is the set of all bounded linear oper-
ators on the Hilbert space H defined everywhere) for some positive linear
map T on B(H). It seems reasonable to expect that given a positive linear map
T on B(H), it should be such that for every natural number n, T, given above
should be positive. In such a case, T is said to be completely positive (CP) and
such CP maps or semigroups of such maps play a very important role in the
description of nonconservative dynamics on quantum systems. It is also useful
to note that if the algebra involved is commutative (like the algebra of n x n
diagonal matrices in the first example instead of B(H) or the whole matrix
algebra) positivity and complete positivity are equivalent and that is why com-
plete positivity does not surface in the context of nonconservative evolutions of
classical physical systems. A detailed mathematical study of CP maps and of
semigroups of CP maps on an algebra is done in Chapters 2 and 3, respectively.

As we had mentioned earlier in the context of a physical subsystem interact-
ing with a reservoir in such a way that the reduced dynamics is governed by a
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Master equation, it is natural to assume that the Master equation is just the dif-
ferential form of a contractive semigroup of CP maps on the algebra describing
the subsystem. Now we can turn this into a very interesting (and demanding)
mathematical question: does there exist a ‘suitable’ probabilistic model for (a)
the reservoir and for (b) its interaction with the given subsystem such that the
expectation of the total evolution with respect to the probabilistic variables give
the CP semigroup we started with? This is the general problem of ‘dilation of a
contractive semigroup of CP maps on a given algebra’. This problem is solved
in Chapter 6 in complete generality under the hypotheses that the given semi-
group of CP maps is uniformly continuous so that its generator acting on the
given algebra is bounded.

There are complete descriptions of the structure of the generator of a uni-
formly continuous semigroup of CP maps on an algebra in the third chapter.
Unfortunately the situation is far from settled for a similar question if the semi-
group is only strongly continuous, which is, as is often the case, more inter-
esting from the point of view of applications. However, if we pretend that the
generator of the strongly continuous semigroup of CP maps on the algebra for-
mally looks similar to that for the uniformly continuous case, then under certain
hypotheses a class of strongly continuous semigroups can be constructed such
that its generator coincides with the formal one on suitable domains. This is
described in the second section of the same chapter along with an applications
to a large class of classical Markov processes and also to the irrational rotation
algebra which is a type IT; factor von Neumann algebra. More details on these
constructions and results on the unital nature of the semigroups, so constructed,
can be found in Chebotarev [25]. This chapter ends with an important abstract
theorem on noncommutative Dirichlet forms associated with a strongly con-
tinuous semigroup of CP maps on a von Neumann algebra equipped with a
normal faithful semifinite trace. This result is then used in Chapter 8 to solve
the dilation problem for such semigroups.

In order to carry out the program charted out in an earlier paragraph, it is
necessary to develop some language and machinery. In Chapter4, the basic
theories of Hilbert C*- and von Neumann modules and of group actions on
them are presented. These ideas are then used to develop an elaborate the-
ory of stochastic integration and quantum Itd formulae in symmetric Fock
spaces extending the earlier theory as described in [97]. This language seems
to be sufficiently powerful to allow a large class of unbounded operator-valued
processes in Fock space to be treated. These methodologies were then used to
solve Hudson-Parthasarathy (H-P)-type stochastic quantum differential equa-
tions with bounded coefficients (Chapter 5) and with unbounded coefficients
(Chapter 7) giving unitary or isometric evolutions in a suitable Hilbert space as
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solutions. The Evans—Hudson (E-H)-type equation of observable or of an ele-
ment of an algebra is re-interpreted as an equation on the space of maps on a
suitable Fock Hilbert module and for bounded coefficient case, such equations
are solved in Chapter 5. This language and associated machinery are important
because they allow us to answer in the affirmative the problem of the dilation
of a uniformly continuous semigroup of CP maps on an algebra.

Chapter 6 uses the tools of Chapters 4 and 5 to show that given a uniformly
continuous semigroup of CP maps on a von Neumann algebra, there exists
a quantum probabilistic model in the Fock space such that there is a E-H-type
quantum stochastic differential equation describing the stochastic evolution of
the observable algebra of the quantum subsystem coupled to the quantum sto-
chastic process in Fock space modeling the reservoir, and such that the expec-
tation gives back the original CP semigroup. This construction is canonical and
interestingly gives a quantum stochastic differential equation for the evolution
so that further computations for any other observable effects may be facilitated.

The mathematical problem of stochastic dilation of a semigroup of CP maps
on a C*- or von Neumann algebra, uniformly or strongly continuous, with the
additional requirement that the dilated map on the algebra satisfies a quantum
stochastic differential equation in Fock space and is a x-homomorphism on the
algebra of observables is the central mathematical problem treated in this book.
The property of *-homomorphism of such maps is a basic requirement of any
quantum theory and the fact that these also satisfy a differential equation makes
the family of dilated maps a stochastic flow of x-homomorphisms on the alge-
bras. In fact, Chapters 6 and 8 are devoted to the final steps of the solution of
this problem, the first for the uniformly continuous semigroup and the second
for the strongly continuous one, while the Chapters 2 to 5 and Chapter 7 deal
with preliminary materials and develop the machinery needed. This completes
our discussions on the central mathematical problem treated here along with its
connection to applications, arising from the physics of open quantum systems.

There is a another mathematical direction from which we approach the cen-
tral mathematical problem of stochastic dilation, viz. that of noncommutative
geometry. Chapter 9 should not be and cannot be thought of as an exposi-
tion on the rapidly developing subject of noncommutative geometry as created
by Alain Connes [28] (the reader may also look at the books [82] and [56]).
Instead, after some introduction to basic concepts in differential geometry and
elements of noncommutative geometry, three explicit examples are worked out
and in each case an appropriate associated stochastic process (classical or quan-
tum) is constructed. Much more study in these areas remains to be done; for
example one can investigate whether the nontrivial curvature in the Quantum
Heisenberg manifold can be captured in terms of the stochastic processes on it.
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We think the spirit of the book is perhaps well-described in the preface by
Luigi Accardi in Probability Towards 2000 [3] and we quote:

The reason why the interaction of probability with quantum physics is different
from the above mentioned ones is that the problem here is not only to apply
classical techniques or to extend them to situations which, being even more general
still remain within the same qualitative type of intuition, language and techniques.
Furthermore, the formalism of quantum theory, with its complex wave functions
and Hilbert spaces, operators instead of random variables, creates a distance
between the mathematical model and the physical phenomena which is certainly
greater than that of classical physics. For these reasons, these new languages and
techniques might be perceived as extraneous by some classical probabilists and
researchers in mathematical statistics. However, the developments motivated by
quantum theory provide not only powerful theoretical tools to probability, but also
some conceptual challenges which can enter into the common education of all
mathematicians in the same way as happened for the basic qualitative ideas of
non-Euclidean geometries.
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