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Preface

This book is designed for use as a supplement to all current standard texts or as
a textbook for a first course in circuit analysis. Emphasis is placed on the basic laws,
theorems and techniques which are common to the various approaches found in
other texts.

The subject matter is divided into chapters covering duly-recognized areas of
theory and study. Each chapter begins with statements of pertinent definitions,
principles and theorems together with illustrative and other descriptive material.
This is followed by graded sets of solved and supplementary problems. The solved
problems serve to illustrate and amplify the theory, present methods of analysis, pro-
vide practical examples, and bring into sharp focus those fine points which enable the
student to apply the basic principles correctly and confidently. The large number of
supplementary problems serve as a complete review of the material of each chapter.

Topics covered include fundamental circuit responses, analysis of waveforms, the
complex number system, phasor notation, series and parallel circuits, power and power
factor correction, and resonance phenomena. Considerable use of matrices and de-
terminants is made in the treatment of mesh current and node voltage methods of
analysis. Matrix methods are also employed in the development of wye-delta transfor-
mations and network theorems such as superposition and reciprocity. Mutually coupled
circuits are very carefully explained. Polyphase circuits of all types are covered, with
emphasis on the one-line equivalent circuit which has important applications. The
trigonometric and exponential Fourier series are treated simultaneously, and the coeffi-
cients of one are frequently converted to coefficients of the other to show their rela-
tionship. Direct and alternating current transients are treated using classical
differential equations so that this topic can precede the phasor notation of Chapter 5,
and this is recommended for those whose proficiency in mathematics will permit this
arrangement. The Laplace transform method is introduced and applied to many of the
same problems treated in Chapter 16 by differential equations. This permits a con-
venient comparison of the two methods and emphasizes the strong points of the
Laplace method.

I wigh to avail myself of this opportunity to express my gratitude to the staff of the
Schaum Publishing Company, especially to Mr. Nicola Miracapillo, for their valuable
suggestions and helpful cooperation. Thanks and more are due my wife, Nina, for
her unfailing assistance and encouragement in this endeavor.

JOSEPH A. EDMINISTER

The University of Akron
August 21, 1965
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Chapter 1

Definitions and Circuit Parameters

MECHANICAL UNITS

The rationalized MKS system of units is used in electrical engineering.

In this system the fundamental mechanical units are the meter (m) of length, the
kilogram (kg) of mass, and the second (sec) of time. The corresponding derived force
unit, the newton (nt), is that unbalanced force which will produce an acceleration of
1 m/sec?® in a mass of 1 kg.

Force (newtons) = mass (kilograms) X acceleration (m/sec?)

It follows that the mks unit of work and energy is the newton-meter, called the joule,
and the unit of power is the joule/sec or watt. (1 newton-meter = 1 joule, 1 joule/sec =
1 watt) )

COULOMPB’S LAW

The force F' between two point charges ¢ and ¢’ varies directly as the magnitude of
each charge and inversely as the square of the distance + between them.
= 3
F = k e |
where k is a (dimensional) proportionality constant which depends on the units used for
charge, distance and force. F is given in newtons if ¢ and ¢’ are in coulombs, r in meters,
and | k = 9 x 10° nt-m*coul®
__1 = 1 =1 _ ~12 oul2/nt-m?
If we now define k = y then F = Tre, 7 where ¢, = yw 8.85 X 1012 coul?/nt-m?2.

mEy

When the surrounding medium is not a vacuum, forces caused by charges induced in
the medium reduce the resultant force between free charges immersed in the medium.

The net force is now given by F = le_c %‘i— For air e is only slightly larger than ¢, and

for most purposes is taken equal to ¢. For other materials ¢ is given by
€ = Keo

where K is a dimensionless constant called the dielectric constant or specific inductive
capacity of the material between the charges, «¢= K¢, is called the permittivity of the
material, and ¢, the permittivity of free space. For a vacuum, K=1 and e=¢,

The unit of charge, the coulomb, may be defined as the quantity of charge which, when
placed 1 meter from an equal and similar charge in vacuum, repels it with a force of
9 x 10° newtons. Convenient submultiples of the coulomb are

1 xc = 1 microcoulomb = 10-¢ coulomb
1 ppe = 1 micromicrocoulomb = 1072 coulomb

The charge carried by an electron (—e) or by a proton (+e€) is e = 1.602 X 107 coulomb.

1



2 DEFINITIONS AND CIRCUIT PARAMETERS [CHAP. 1

POTENTIAL DIFFERENCE v .

The potential difference v between two points is measured by the work required to
transfer unit charge from one point to the other. The volt is the potential difference (p.d.)
between two points when 1 joule of work is required to transfer 1 coulomb of charge
from one point to the other: 1 volt = 1 joule/coulomb.

If two points of an external circuit have a potential difference v, t.hen a charge ¢q in
passing between the two circuit points does an amount of work gv as it moves from the
higher to the lower potential point.

An agent such as a battery or generator has an electromotive force (emf) if it does
work on the charge moving through it, the charge receiving electrical energy as it moves
from the lower to the higher potential side. Emf is measured by the p.d. between the
terminals when the generator is not delivering current.

CURRENT ¢
A material containing free electrons capable of moving from one atom to the next is
a conductor. The application of a potential difference causes these electrons to move.

An electric current exists in a conductor whenever charge g is being transferred from
one point to another in that conductor. If charge is transferred at the uniform rate of
1 coulomb/sec, then the constant current existing in the conductor is 1 ampere: 1 ampere =
1 coulomb/sec. In general, the instantaneous current ¢ in a conductor is

dq (coulombs)

i (amperes) = g onds)

The positive current direction is, by con- ~+— electron motion
vention, opposite to the direction in which ' Fig.11 eurrent direction —o-
the electrons move. See Fig. 1-1. £

POWER »p
Electrical power p is the product of impressed voltage v and resulting current i.

p (watts) = v (volts) X i(amperes)

Positive current, by definition, is in the direction of the -0
arrow on the voltage source; it leaves the source by the i
+ terminal as shown in Fig. 1-2. When p has a positive T ‘
value the source transfers energy to the circuit. ‘ 1()9

If power p is a periodic function of time ¢ with period T,
then the

. T
Average power P = %f pdt —°
0 Fig.1-.2

ENERGY w

Since power p is the time rate of energy transfer,
. .

dw
= — d W=
7 an . pdt

where W is the energy transferred during the time interval.
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RESISTOR, INDUCTOR, CAPACITOR

When electrical energy is supplied to a circuit element, it will respond in one or more
of the following three ways. If the energy is consumed, then the circuit element is a
pure resistor. If the energy is stored in a magnetic field, the element is a pure inductor.
And if the energy is stored in an electric field, the element is a pure capacitor. A practical
circuit device exhibits more than one of the above and perhaps all three at the same time,
but one may be predominant. A coil may be designed to have a high inductance, but the
wire with which it is wound has some resistance; hence the coil has both properties.

RESISTANCE R

The potential difference v(f) across the terminals of a pure
resistor is directly proportional to the current i(¢) in it. The i)
constant of proportionality R is called the resistance of the re-
sistor and is expressed in volts/ampere or ohms.

o) = Ri(t) and i) = 20

|

-+

AAAAAA
YYVVYY

()

|

R S
No restriction is placed on »(f) and i(f); they may be con-
stant with respect to time, as in D.C. circuits, or they may be Fig.1-3

sine or cosine functions, etc.

Lower case letters (v,%,p) indicate general functions of time. Capital letters (V,I,P)
denote constant quantities, and peak or maximum values carry a subscript (Vim,Im, Pn).

INDUCTANCE L

When the current in a circuit is changing, the magnetic flux
linking the same circuit changes. This change in flux causes an i(t) B
emf v to be induced in the circuit. The induced emf v is propor-
tional to the time rate of change of current if the permeability L
is constant. The constant of proportionality is called the self- -
inductance or inductance of the circuit, —L

_ o i P |
v(t) = LW and () = Lf vdt

¥(t)

~000F

Fig.14

When v is in volts and di/dt in amperes/sec, L is in volt-sec/ampere or henries. The
self-inductance of a circuit is 1 henry (1 h) if an emf of 1 volt is induced in it when the
current changes at the rate of 1 ampere/sec.

CAPACITANCE C

The potential difference v between the terminals of a capaci- '
tor is proportional to the charge q on it. The constant of propor- i(t) i".l:— 3
tionality C is called the capacitance of the capacitor. C

¥(t)
_ ., _dg _ _dv 1 . -
a®) = Cot), i=G=0Cg, o) =g iat I_J_

When ¢ is in coulombs and v in volts, C is in coulombs/volt Fig. 1-5
or farads. A capacitor has capacitance 1 farad (1£) if it requires
1 coulomb of charge per volt of potential difference between its conductors. Convenient
submultiples of the farad are -

1uf = 1microfarad = 10-°f and 1 uuf = 1 micromicrofarad = 1012 f
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KIRCHHOFF’'S LAWS

1. The sum of the currents entering a junction is equal to the sum of the currents
leaving the junction. If the currents toward a junction are considered positive and those
away from the same junction negative, then this law states that the algebralc sum of all .
the currents meeting at a common Junctlon is zero.

3 currents entering = = currents leaving 2 potential rises = 2= potential drops
it dy = G+t s v, — vy = Ri+ L(di/dt)
or htla—d—ds—d = 0 or v, ~ v, — Ri— L{di/dt) = 0
Fig.1-6 Fig. 1-7

2. The sum of the rises of potential around any closed circuit equals the sum of the
drops of potential in that circuit. In other words, the algebraic sum of the potential
differences around a closed circuit is zero. With more than one source when the direc-
tions do not agree, the voltage of the source is taken as positive if it is in the direction
of the assumed current.

Circuit Response of Single Elements

Voltage ' Current
Element : .
across element in element
. _ . o V(t)
Resistance B »(t) = Ri(t) W) = =
_ rdi PR
Inductance L o (t) = LEE () = 7 f vdt
. _1 . a2
Capacitance C o(t) = Cf 1dt L) = C dt
Units in the MKS System
Quantity Unit © Quantity Unit
Length l meter m Charge Q,q coulomb c
Mass m kilogram kg Potential -V,v volt v
Time t second sec Current I3 ampere amp
Force F, 5 newton nt Resistance R ohm Q
Energy W, w joule j Inductance L henry h
Power P,p watt w Capacitance C farad £
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L1,

1.2

1.3.

14.

Solved Problems

In the circuit shown in Fig. 1-8 the applied constant voltage is V = 45 volts. Find
the current, the voltage drop across each resistor, and the power in each resistor.
The sum of the voltage rises equals the sum of the voltage
drops around any closed loop; thus 20
- AAAAAA
Vv = I + I6) + IT), 45 = 151, I = 3amp

The voltage drop across the 2 ohm resistor is V. = IR;
3(2) = 6 volts. Similarly, Ve = 3(6) = 18 volts, and V-
21 volts.

The power in the 2 ohm resistor is P: = V:I = 6(3)
18 watts or P: = I’R, = 8%2) = 18 watts. Similarly, Ps
VeI = 54 watts, and P; = V.1 = 63 watts. Fig.1-8

Hi

A current I; divides between two parallel branches having resistances R:; and R;
respectively as shown in Fig. 1-9. Develop formulas for the currents I; and I: in
the parallel branches. :

The voltage drop in each branch is the same, ie. V = L “RA;A
IiRy = LiR.. Then YYevry
— - yYy.v _ 1.1
IT—11+Is—RlTRz—V<Rl+R'> : | N—
= LR R, + R, = I R;+ R, ’ L“"Afi’u
= 14t RiRs = 1 T YVVVVY
. _ R, - _ R, 14 !
from which I, = I, (_—-R1+Rg>. Similarly, I. = I, <“31+Rz>'
Fig.1-9
Three resistors Ri, Rs, Rs are in parallel as shown in i R
Fig. 1-10. Derive a formula for the equivalent resist- e .'a‘.‘i';\"
ance R. of the network.
Assume a voltage A to B of v(t), and let the currents in
Ry, Ry, R: be ii(t), i2(2), is(t) respectively. The current in R, 4 i@ R
must be the total current i; (f). Then o(t) = Riia(t) =Raia(t)= & == uy L &
Rs’l:s(t) = Rg’ir (t) and —i—’
) = a0+ 4+ o) _ o) , o) , o0 "
ip(t) = 4(t) +ia(t) + is(t) or . - R, + R + Ry .
13 Rs
1_.1,.1.1 MWW
or R.~R1+R2+Ra
For a two-branch parallel circuit, 1= -1—+ L o (t)
R, R: R .
R — RlRi . .
= BT R Fig.1-10

The two constant voltage sources V4 and Vg act in
the same circuit as shown in Fig. 1-11. What power
does each deliver?

The sum of the potential rises is equal to the sum of the
potential drops around a closed circuit; hence

20 — 50 = IQ1) + I(2), I = —10 amp
Power delivered by V, = V,I = 20(—10) = —200 watts.
Power delivered by V, = VI = 50(10) = 500 watts. Fig. 1-11




1.5.

1.6.

L7.

DEFINITIONS AND CIRCUIT PARAMETERS [CHAP. 1

In the circuit shown in Fig. 1-12(a), the voltage function
is v(f) = 150 sinot. Find the current i(t), the instan- 7\
taneous power p(t), and the average power P. '
i) = Yle—v(t) = 1?559- sinwt = 6 sin wl amperes ,,(t)<~5' 250

p(t) = w(@)i(t) = (150 sinwt)(6 sinwt) = 900 sin® wt watts

1" . - 900 ("

P = p J; 900 sin® wt d{wt) = ~ j; (1 — cos 2uwt) d(wt)

900 . i

. = E;[ t — -} sin 2wt:’o = 450 watts . Fig. 1_12<a)

The eurrent i(t) is seen to be related to the voltage v(t) by the constant R. The instantaneous
power plot could have been obtained by a point by point product of the v and i plots shown in
Fig. 1-12(b) below. Note that v and 7 are both pesitive or both negative at any instant; the product’
must therefore always be positive. This agrees with the statement that whenever current flows
through a resistor, electrical energy is delivered by the source.

1504 ‘ i
5
0 s 27/ wt I
0 - } ¢
1 2 3 4 5  6X107se
~180 + .
64* v
/ ’
0 T 2 ot
4 g B
-6+ 0 $ ' 4
P 1 2 3 4 5 6 X 10 % sec
e e g —— — — —
200 ; |
f ' '
! l
1 | p
I 1
{ I
{ } 2650 J—
I I
0 1 —f a’ Y wt 0 = p p _f
ir 7 2 1 2 3 4 5 6 X 10~ sec
Fig. 1-12(5) Fig.1-13

The current function shown in Fig. 1-13 above is a repeating square wave. With
this current existing in a pure resistor of 10 ohms, plot voltage v(f) and power p(%).

Since v(t) = Ri(t), the voltage varies directly as the current. The maximum value is
Rina = 5(10) = 50 volts.

Since p = vi, the power plot is a point by point product. The maximum value iS Zmax Vmax =

50() = 250 watts.

The current function shown in Fig. 1-14 below is a repeating sawtooth and exists
in a pure resistor of 5 ohms. Find »(f), p(?), and average power P.

Since v(f) = Ri(t), Ymax = Rimax = 5(10) = 50 volts.

. - .10
When 0 < t < 2X 1072 sec, 1= o

v=Ri=25X10%, p =i =126X10%, P =

t = 5X10%. Then

1

2X10-8
—_— . 125 X 10%* dt = 167 watts
2x10-® fo
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18.

1.9.

1.10.

a
100
b
|
5Q 150
of e L]
2 4 6 X 10" sec

[

Fig.1-14 Fig.1-15

In the circuit shown in Fig. 1-15 above, the current in the 5 ohm resistor is () =
6 sin ot amperes. (a) Determine the current in the 15 and 10 ohm resistors and the
voltages a to b and b to ¢. (b) Find the instantaneous and average power consumed
in each resistor. :

(@) The same voltage ve. is across the 5 and 15 ohm resistors; then
e = 6Rs = (6sinet)(d) = 30 sinwt and s = Ub/Ris = 2sinwt

Now o = 45+ 14 = 8sinet and Vb = doRw = 80sinwt

(b) Instantaneous power p=wvi. Thus ps = (30 sinwt)(6sinwt) = 180 sin*wt. Similarly,
pis = 60 sin®wt and pr = 640 sin® wt.

Average power in 5 ohm resistor is
1" 1 ¢"
p, = L f 180 sin® ot d(wt) = 1 f 180[4(1 — cos 20t)] d(wt) = 90 watts
T 0 T 0

Similarly, P;; = 30 watts and P = 320 watts.

A pure resistor of 2 ohms has an applied voltage v(¢) given by

(c;t!)z (u;t!y . (lat!)a 4 e -] volts

Determinesthe current and power for this single circuit element.

o(t) = 50[1— +

. .. x x*
Expanding cosx as a power series in ¢, cos¢ = 1— 2—'+—4—‘—6—' + s

Hence wv(t) = 50 coswt, i(t) = 25 coswt, p(t) = 1250 cos’wt, and P = 625 watts.

A pure inductance L = .02 henrys has an applied voltage -
v(t) = 150 8in 1000t. Determine the current i(f), the N
instantaneous power p(t), and the average power P. )v(t) 02h

i = % f oy dt = ﬁ f 150 sin 1000¢ dt
+

_ 150/ —cos 1000¢
02 1000

p = vi = —160(7.5)(} sin 2000¢) = —562.5 sin 2000t watts. [sinx cosx = } sin2x.] The average
power P is obviously zero, as shown in Fig. 1-16(b) below.

> = —7.5 cos 1000t amp Fig. 1-16(a)
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t

6 8 10 X 10~ sec
{
i

-

RA

o

= <
-5

|

|

i

i

\

I

\

1

|

|

i

-

1
—_—

Y S

Fig. 1-16(b) _ Fig.1-17

1.11. A single pure inductance of 3 millihenrys passes a current of the waveform shown
in Fig. 1-17 above. Determine and sketch the voltage v(f) and the instantaneous
power p(f). What is the average power P?

The instantaneous current #(f) is given by (see Fig. 1-17 above):

(1) 0<t<2ms 1 = 5X10%

(2) 2<t<4ms i = 10

(8) 4<t<6ms i = 10 ~ 10X 10%¢t — 4X 1073 = 50 — 10 X 10%
(4) 6 <t<8ms i = —10

(6) 8<t<10ms i = ~10 + 5X10%t — 8X107% = —50 + 5X10%

The corresponding voltages are:
di d

— kA, -3 3 =
1 v, = L 7 3X10 7t (6 X 10%) 15 volts

I . -y _
@) v, = Ldt = 38X10 dt(lo) = 0
3 v = LY - 3x 10‘31(50 — 10X 10%) = —30 volts, etc.

dt d_t
The corresponding instantaneous power values are:

1) p = wi = 15(6X10%) = 75 X 10% watts
) p = vt = 0(10) = 0 watts
8 p = vi = —380(b0 — 10X 10%) = —1500 + 300 X 10% watts, etc.

The average power P is evidently zero.

1.12. A voltage v(f) is applied across two inductances L; and
Ls in series. Determine the equivalent inductance L.
which can replace them and yield the same current. I C5 -

v(t)

Applied voltage = voltage drop across L; + drop across L:
= L% - % g odi Ly
v(t) = L’dt = Iy ¥ + L’dt

from which L. = Li+ La.

T
Ly

Fig.1-18
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1.13.

1.14.

1.15.

Find the equivalent inductance L. of two inductances L, and L: in parallel as shown
in Fig. 1-19 below. '

Assume a voltage v(t) exists across the parallel combination and let the currents in L, and L.
be i and i, respectively. Since the total current i, is the sum of the branch currents,

iy = i+d or Llfvdzz%fvdzﬂhifwt'
€ o 1.
11,1 Ll
Then L. " ntL * T I L

The reciprocal of the equivalent inductance of any number of inductors connected in parallel is
the sum of the reciprocals of the individual inductances.

——000 ™ ~JO0
1 Ly 3h
’ 2h
UO— N I
ir
s L 6h
—_— K
| I '
= v(t) !
Fig.1-19 Fig.1-20

Three pure inductances are connected as shown in Fig. 1-20 above. What equivalent

inductance L. may replace this circuit?

Equivalent inductance of parallel combination is L, = Zlf}fi—— = ~§3—3—_§~)€ = .2h
2 - 0

The required equivalent inductance L. = 2+ L, = .4 h.

A pure inductor carries a current ¥(f) = Insinst. Assuming the stored energy in
the magnetic field is zero at t =0, derive and sketch the energy function w(t).

o) = Ldiit— (Insinot) = wLln cosut
p(f) = vi = aLlusinetcoswt = JoLln sin2et
t
w(t) = f %mLI:. sin2wtdt = }LI.’.. [—cos2wt + 1] = %Lli sin® wt
0

At ot = /2, 37/2, 5n/2, ete, the stored energy is maximum and equals }LIn. At ot =0,
7, 2r, 3, ete, the stored energy is zero. See Fig. 1-21 below.

When p(t) is positive the flow of energy is toward the load and the stored energy increases.
When p(t) is negative the energy is returning from the magnetic field of the inductor to the source.
In a pure inductor no energy is consumed. The average power is zero and there is no net transfer
of energy.

Pal? Wal oo

wt

W b e e e

Fig.1-21



10

DEFINITIONS AND CIRCUIT PARAMETERS [CHAP.1 °

1.16. Consider a pure capacitor with an applied voltage () = Vnsin«f. Find the cur-

rent i(t), the power p(t), the charge g(t), and the stored energy w(f) in the electric
field assuming w(t) =0 at t=0.

«t) = Cdv/dt = «CVa coswt amperes

p(t) = wvi = }eCVn sin2et watts

gty = Cv = CVasinwt coulombs
t

w(t) = f pdt = 1CVm(l—cos2wt) = JCVnsin®at
[}

At ot = #/2, 37/2, 57/2, ete, the stored energy is maximum and equals %CV.’;‘. At ot =0,
7, 2w, 87, etc, the stored energy is zero. See Fig. 1-22 below.

When p(t) is positive the flow of energy is from the source to the electric field of the capacitor
and the stored energy w(t) is increasing. When p(t) is negative, this stored energy is being returned
to the source. The average power P is zero and there is no net transfer of energy.

Vi _v____ wCV2
2

wCV3
2
< w

NCVn '}CV:
|
{
— wl 1
0 2x %
1
i

. - ! wt
—wCV 0 -
37 r %@ 27

Fig. 1-22

1.17. Determine the equivalent capacitance C. of the parallel combination of two capacitors

C, and C: shown in Fig. 1-23 below.

Assume a voltage v(t) exists across the parallel combination and let the currents in C; and C;
be 41 and 4 respectively. Then, if the total current is 4,

b=h+ih o Gy = GEod) + CEet) o Co= Gt

The resultant (equivalent) capacitance of any number of capacitors connected in parallel is
the sum of their individual capacitances.

|{C:
. n v vs
—— %%Cx 41(0: —l
ir . —
— (G ¢ l
N v(t) '
v(t)

Fig.1-23 Fig. 1-24
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1.19.

1.20.

Determine the equivalent capacitance C. of the series combination of two capacitors
C: and C: shown in Fig. 1-24 above.

Assume a voltage exists across the series circuit. Then

Applied voltage = voltage drop across C; + voltage drop across C:
1 (- _ 1 (. 1 (.
o f iwa = X f it at + & f ity dt
1 _ 1 1 Y . C1C
Then . “ata T C“Tora

The reciprocal of the resultant (equivalent) capacitance of any number of capacitors connected
in series is the sum of the reciprocals of the individual capacitances.

Find the equivalent capacitance C. of the combination : aut
of capacitors shown in Fig. 1-25. {{d
Equivalent capacitance of series branch is PR 3t 8ut | I—
Cs C.Cs 3(6)

S CrC 3+6 M HH(‘_

The required equivalent capacitance is

C. = 4+ Cs = 6uf = 6 X 107° farads

The given series circuit passes a currént i(t) ————\WJWV'-—’WO‘\—“
of waveform shown in Fig. 1-26. Find the 5 o 2 mh

voltage across each element and sketch each

voltage to same time scale. Also sketch q(t),  1of
the charge on the capacitor. ¢
Across Resistor: v, = Ri T 2 Nt 5 Sexio-
The plot of v, is a duplicate of the current fune- "'10}
tion plot, with a peak value of 2(10) = 20 volts. ' Vn
Across Inductor: v, = Ldi/dt . 20-~~
() 0<t<lms i = 10X 10% A
< 10-
Vy, = (2 X 10_3)(10 X 10‘) = 20 _zor_ ____________
@ 1<t<2ms i = 10 v
v, = (2X10-9(0) = 0 20
ete. 0 — t
1 1 2 3 4 5 8x10-*
Across Capacitor: v, = Yol f idt ~20 |

- 1 ) .
1) 0<t<1ms v, = 500)(10—51; (10 X 10%t) dt

10 X 10°¢*

500 X 10~®
= 10 + 20X 10°t—107%)

t
@ 1<t<2ms v, = 10+~;—f (10) dt
16-3

I e e - -
ote. 20X 10* |
The plot of g is easily made using the relationship 10%X107*'[ _
¢ = Cv,. Note that when ¢ is positive, both g and v 0 i . —— t
increase, i.e. both the charge on the capacitor and the 1 2 3 4 5 6 x 16-*

voltage across the capacitor increase; when 1 is nega-
tive, both decrease, ' Fig. 1-26



