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Preface

The relatively advanced age of complex function theory and the resulting
codification of the methods employed therein, together with the large number
of distinguished mathematicians who, over many decades, have devoted them-
selves to expository works on the subject, have largely precluded essential
variations in the material covered or the techniques employed in introductory
complex analysis texts. As a result the major considerations of an author in
this field revolve about style, lucidity, the choice of introductory material to
equalize the disparity of backgrounds of potential readers, and the desire to
include in restricted space a reasonable amount of complex analysis per se
without glossing over the difficulties (mostly associated with the topology of
the plane) which are inherent in the foundations of the theory. The last
desideratum presents the greatest challenge. Of the several ways of coping
with it (e.g., introducing combinatorial techniques, basing everything on
winding number, ignoring it), we have chosen one which we hope to be
acceptable to the reader (or teacher) who is not disposed to worrying with such
considerations in the study of complex analysis, as well as to the purist. Namely,
of the difficult plane topology, we have accepted the Jordan curve theorem
without proof and have based essentially all other considerations upon it and
results whose proofs are provided. On this basis we give (Section 17) a non-
intuitive, geometrically motivated (and admittedly lengthy), discussion of the
orientation of a simple closed curve relative to its embedding in the plane,
which leads in a simple way to a non pictorial proof of Cauchy’s formula for
simple closed paths. On the other hand, this discussion is omittable (or its
intuitive content quickly perceived) without loss of continuity; and so are the
remaining sections marked *, which depend upon Section 17.

Five sections (marked t) are concerned with the winding number and
related matters. This concept, which we regard as enlightening but not basic
to our treatment, is not used in other sections. Section 15, which contains a
geometric discussion of the argument which is more careful than that some-
times found in elementary texts, also is not prerequisite to any other sections.

il



v PREFACE

The teaching of complex analysis at the undergraduate level is very similar
in content, if not in rapidity of development, to that of a beginning graduate
course. Accordingly, we have included sufficient background material con-
cerning the real number system and the rudiments of metric spaces to make the
book self-contained and hence suitable at the senior or graduate level. More-
over, we have tried to supply explanations and proofs in detail keeping with
the level of sophistication of the undergraduate reader. There are many
gnawing little things which are sometimes left unsaid in textbooks, things
which a reader of some mathematical experience takes for granted but which
are worrisome to the conscientious student and overlooked entirely by his less
demanding (but more frequent) peers. Neither do we seem to offend graduate
students by inclusion of such items.

Most of the material of Chapter 1 will be in the repertoire of students
who have had courses in advanced calculus, but by setting out the needed
facts as theorems and proving them we hope to remove from the instructor of
a class whose members have varying backgrounds the burden of reviewing
all of these facts in detail during class time. In our opinion a selective sample
of the important proofs of sections 1-10 is optimal for most courses.

Sections | to 58 should provide more than enough material for a one
semester graduate course or a two quarter undergraduate course. In such a
program one would probably omit all sections marked *, T, or  as well as
6.4-6.9, 8.8-8.11, 12.10, 12.11, 12.13-12.16, 12.19-12.21. The last four
chapters are essentially independent of each other.

In addition to their usual purpose or stimulating the reader to interact
with the mathematics, the exercises serve as places to outline (through the
hints) propositions which are needed in later developments but whose proofs
are cumbersome, or similar to others presented, or otherwise unsuited for
detailed discussion in the text. All such exercises, as well as certain others, are
solved in Solutions to Selected Exercises.

The bibliography contains specific references from the text, while the
collateral reading list is limited to items we have found most helpful or interest-
ing. No attempt is made to justify the myriad plagiarisms.

Finally, a word to the student. There are many allusions to “rigor” and
“intuition” throughout the book, and perhaps you will feel their purpose is
for lauding the former and deprecating the latter. On the contrary, each has
an important place in mathematics. Moreover, they are not absolutes; proofs
which are considered rigorous, that is, acceptable, by one generation often
lose that status with the passage of time and, occasionally, vice versa. In fact,
proof techniques which are accepted by certain mathematicians may be re-
jected by their contemporaries. Thus the decision whether or not a proof is
rigorous seems to be largely determined by intuition tempered by training; in
any event it is clearly a subjective decision. We feel, however, that it is
important that an introductory text at this level make clear which portions of



PREFACE v

a discussion are simply explanatory and which arguments are likely to be
regarded as rigorous by the practicing analyst. Maintaining rigor in this sense
means, roughly, that proofs based on visual reasoning, via identification of the
complex numbers with points of a plane, are to be avoided. In keeping with
this viewpoint, this book is not concerned with the subtleties of mathematical
logic, axiomatic set theory, etc.

You may find certain sections (notably 12, 15, 17, 18) more dull than
difficult. Rapid initial reading of these for general content and returning to
them when you have progressed sufficiently far to appreciate their purposes
may help to alleviate your impatience to get to the core of the subject.

The tendency to become bogged down in passively checking the details
of a proof can be countervailed by actively seeking the guiding idea (i.e., the
intuitive part) and then checking that all niceties have been correctly attended
to. A more vigorous (and highly recommended) approach is to read the
assertion and then attempt to supply your own proof. Even if you fail you will
gain understanding of the result and appreciation for the proof.

J.D.D.
C.C.O.
January 1969
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CHAPTER 1

PRELIMINARY CONCEPTS

1. SETS AND FUNCTIONS

1.1 Two concepts that are fundamental to mathematics, and particularly to
analysis, are those of set and function. Indeed, our primary interest is the
study of functions defined on a particular set, the set of complex numbers. A
description adequate for our purposes is that a set is a collection of identifiable
objects. Most of the sets that we will consider will be sets of numbers of some
kind, but the importance of sets in mathematics is associated with the generality,
and hence the flexibility, of the concept. Thus there is no restriction on the
kinds of ‘““objects” that may constitute a set. The terms ““family” and
“collection” are sometimes used instead of ““set™, particularly when the objects
of the set are themselves sets.

We use the notation a € 4 to indicate that a is one of the objects in the set
A, and we say that a is an element of 4 or that a belongs to 4. If a is not an
element of A4, we indicate this fact by a ¢ A. Often sets are defined as con-
sisting of all objects that possess a certain *‘property”, say P. This is indicated
concisely by the notation 4 = {a: a satisfies P}. (The colon might be read
“such that”.) In this notation the set of odd integers, for example, could be
designated as 4 = {a:a = 2k + 1, kis an integer}. The set consisting of the
objects ay, . .., a, is denoted by {ay, ..., a,}; in particular, the set consisting
of the sole element a is denoted by {a}.

A set A is called a subset of set B, written A < B, if every element of 4 is
also an element of B. (We also write B > 4 to mean the same thing.) Two
sets are called equal, written A = B, if A © B and B < A, that is, if thesets
contain precisely the same elements. Thus a set is determined solely by the
elements that it contains, or to phrase it another way, a set 4 is considered
to be defined if, for every object, x, it is possible to determine whether or not
x e A. (Assigning a suitable meaning to ““determine” is admittedly a thorny
(and unsettled) mathematical problem.) The fundamental way to prove that
A = B is to prove that every element of 4 is an element of B, and vice versa.
However, there are a number of formal rules for manipulating sets which

1



2 PRELIMINARY CONGEPTS | |

generally are helpful in establishing that one set is a subset of another or that
two sets are equal. Some of these rules appear in the exercises.

It is expedient to introduce a ““set” that contains no elements. It is called
the empty set and is denoted by @. Thus for every set 4, @ < A.

If A and B are two sets, the set of all elements that belong either to 4 or to B
is called the union of A and B and is denoted by 4 U B. Thus

AUB ={a:aeAoraeB}

The set of elements that belong to both 4 and B is called the intersection of A
and B and is denoted by AN B. Thus AN B = {a:aedand ae B}. Sets 4
and B are called disjoint if A " B = @. By the difference A — B we mean those
elements of 4 that are not elements of B; thatis, 4 — B = {a:ae€ Aand a ¢ B}.
Frequently in the course of a discussion it is understood that all sets under
consideration are subsets of some “‘universal” set X. In this case the difference
X — A is referred to as the complement of A (with respect to X).

1.2 An ordered pair (a, b) is an object associated with the individual objects a
and b, in which the order in which @ and b are written is considered essential
to the identity of (a, b). Therefore, unless a = b, (a, b) and (b, a) are distinct
ordered pairs. (This is, of course, in contrast to the sets {a, b} and {b, a}, which
are equal.) Thus two ordered pairs, (a, b) and (¢, d) are equal if and only if*
a=cand b =d.

If 4 and B are nonempty sets, the cartesian product of A and B, denoted by
A x B, is the set of all ordered pairs (a, b) for which a € 4 and b € B; that is
A x B ={(a,b) :ae A and b e B}. The reader should observe that this is a
generalization of the way in which points of a plane are represented as pairs of
real numbers; that is to say, a plane can be interpreted as the cartesian product
of two lines.

1.3 The reader is familiar with the concept of a function as a rule which
associates with each element of a set, say A4, a unique element of a set B. This
description of function leaves much to be desired, however, since essentially it
merely substitutes for the term to be defined another word, namely, “rule”.
While the reader must never lose sight of the intuitive idea embodied in this
description, he should also realize that the term ““function” can be defined in a

*The expression “if and only if”’, which we will henceforth abbreviate iff, occurs
frequently in mathematical exposition. If P and Q are two propositions, then ““if P
(is true), then Q (is true)”” means that P implies Q, whereas “Q (is true) only if P
(is true)” means that Q implies P. Thus the assertion “P (is true) iff Q (is true)”
means that P and Q are logically equivalent propositions. A similar terminology
centers about the terms “necessary’ and ‘“‘sufficient”. If P implies Q we say that P
is sufficient for Q , whereas if Q implies P we say that P is necessary for Q. Thus
“necessary and sufficient” means the same thing as ““if and only if ”’, with the neces-
sary modifications occasioned by grammatical demands.
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precise and concise way by use of the idea of cartesian product. The number of
undefined terms is thereby kept to a minimum. The definition is motivated
by the relationship between a function and its graph, our viewpoint being
that a function is abstractly identical with its graph, which is defined to be a
special kind of subset of 4 x B. Specifically, a nonempty subset fof A x Bis
called a function (from A into B) if (a, b) €f and (a, b’) € f together imply
b = b’. Thus when f is specified, b is uniquely determined by «; this fact is
customarily denoted by b = f(a). Here b is called the value of f at a. Note
that our definition does not require that every element of 4 appear as first
member of an ordered pair belonging to f. Those elements of 4 which do so
appear constitute the domain of f, designated D,. To repeat,

D, = {a: (a, b) € ffor some b € B}.

(Some authors, in defining “function from 4 into B”’, make the definition
such that D, = A.) Similarly, the range of f is the subset of B defined by
R, = {b: (a,b) ef for some ae A}. If it happens that R, = B, this fact can
be indicated by the rather subtle change of terminology, “f is a function
from A4 onto B”.

Synonyms for ‘““‘function” are transformation, mapping, map, operator, and
correspondence. Observe that fis the symbol for the function, whereas f(a) is
an element of R,. It is generally prudent to distinguish these notations,
although in complex analysis the distinction is honored more in the breach
than in the observance. Thus the symbol f(a) is often used simultaneously to
name the function and to indicate that a is the symbol for a ““general” element
of D,;. This usage has certain advantages and is widely understood; so, in the
interests of simplicity and clarity, in later sections we will stray without
apology from the logically correct notation. If f and g are functions from
A to B and f< g, then f is said to be a restriction of g (to D,), or g is
called an extension of f. This means that D, < D, and f(a) = g(a) for all
aeD,.

A simple yet very important function is the identity function 7. For this
function D, can be any specified subset of 4, and R, = D,. The function I is
then defined by I = {(a,a):ae D,}, or alternatively by the specification
I(a) = a for every a€ D,. There are, of course, different identity functions
corresponding to different choices of domain, but it is in general satisfactory
to use the symbol 7 for each of them.

1.4 Let f be a function from 4 into B. If C < A, then f(C) is the subset of B
defined as f(C) = {b: b = f(c) for some ¢ € C}. Thus, for example, f(4) =
f(D;) = R;. Similarly, if D < B we define f~(D) to be the subset f ~1(D) =
{a:f(a) e D}. Therefore f~1(B) = fY(R;) = D;; and when D is a set
consisting of a single point b, f~1(b) consists of those a € D, for which f(a) = b.
Observe that f~1(b) = @ iffbeB — R,.
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1.5 Iffis a function having the property that for each b € R, f~'(b) contains
only one element, then f'is said to be one to one. It is clear that in this case
(and only in this case) /! defines a function (call it f*) with domain R, and
range D;. More precisely, f* is the subset of B x A4 defined by (b, a) € f* iff
(a, b) € f. The one-to-one property makes this a function. To state this yet
another way, a = f*(b) iff b = f(a). We shall follow common usage and
denote this inverse function f* by the symbol /1, though it should not escape
the reader’s attention that we use this notation in two different senses.

As an illustration consider the function f whose domain D, is the set of all
real numbers and whose value at each real number « is the real number a2.
(The real numbers are discussed in the next section.) Its range R, will then
be the set of nonnegative real numbers. The function f'is not one to one since,
for example, f(—2) = f(2) = 4. Moreover, f~1(4) = {—2, 2}, a set of two
elements. The function f does not have an inverse function. Consider, by
comparison, the function ¢ whose domain D, is the set of all nonnegative real
numbers and whose value at each real number a is a®. Its range R, is the set
of nonnegative real numbers. The function g is one to one and has an inverse
function; for example, g 1(4) = 2.

The geometric interpretation of the distinction between fand g should not
go unnoticed. The fact that f does not have an inverse is associated with the
fact that certain horizontal lines have more than one point in common with
the (parabolic) graph (of) f, but this is not the case for the (half-parabolic)
graph (of) g. (See Fig. 1.)

Dy D,

Fig. 1

A one-to-one function f is sometimes said to establish a one-to-one corre-
spondence between D, and R;.
In discussing functions it is customary to use expressions such as *“f’is a real
(valued) function defined on E” to mean that R, is a subset of the set of real
numbers and that D, = E.

1.6 Suppose that fis a function from A4 into B and g is a function from B into
C such that D, > R,. Then the composition of g and fis a function, designated
by g o f (in that order), from 4 into C, with domain D, and defined by g o f =
{(a,¢) : (a,b) € fand (b,¢) € g for some b € B}. In other words, the value of
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gofatais (gof)(a) = g(b) = g(f(a)). Itis easily seen that if f'is one to one,
then fof~1 = Iand f~? «f = I (where in the former equality / is the identity
function with domain = R,, and in the latter I is the identity function
with D; = D).

When the domain of a function fis itself a subset of a cartesian product
E x K, the value of f at the point (e, k) € E x K is denoted by f(e, k) rather

than f((e, k) )

1.7 We introduce one further concept. If M is a nonempty set and to
each u € M there corresponds a set 4, then the set M is called an index set for
the family of sets {4, : p € M}. We define unions and intersections of the sets of
the family as
={a:ae 4, for some pe M}
uEM
and
N A, ={a:ae A, for every p € M}.
HEM
Even when no specific index is mentioned for a family of sets, we still use
the symbols U and N to indicate the union and intersection of the sets of the
family, with minor variations in notation, the meanings of which will be
obvious in each case.

EXERCISES 1

1. Describe in words the meaning of each of the following relations between
two sets:
ANnB= g, AUB= g, AnB=4, AUB=A4A, AUB< A, An
B c A

2. Prove that (AUB)UC=4U (BUC(C), (ANnB)NnC=4n (BNC),
AN BUC)=AnNnB)LUANC),Au( BNC)=(AUB) N (AuUC).
(If U and N are associated with “plus” and “times”, the first three
formulas are obvious analogues of formulas you have seen before.)

3. Show that AN B and A — B are disjoint and that 4 = (4N B) U
(4 — B).

4. Prove the DeMorgan rules: X — (AUB) = (X —A4) N (X —B) and
X—(AnNnB)=(X—A4) U (X — B). These are valid for arbitrary sets
X, 4, B, but when X is the universal set of 1.1, these rules can be stated in a
particularly simple form; e.g., the first asserts that the complement of a
union is the intersection of the complements.

5. Extend DeMorgan’s rules to families of sets.

6. If 4 =4, Udy, thend x B = (4, x B)U (4, x B). If C = 4, N Ay,
then C x B = (4, x B) N (4, x B).
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7. Define the symmetric difference of A and B, designated 4 A B, by A AB =
(AU B) — (AN B). Show that AAB =BAA and that AAB =
(4 — B) U (B — A). Describe the points in 4 A B according to each of
these formulas, and convince yourself on this basis that the two formulas
represent the same set. Show that A Ad = o and 4 A @ = A; explain
on the basis of the description you gave of 4 A B. Show that (4 A B) N
C=(ANnC)A (BnC). Explain.

8. Given thatfis a function, find the relationship between

"4J.JB and f(4) U f(B),

b) f(4 N B) and f(4) N f(B),

c) fMW& B) and f71(4) U f(B)

d) /= (A0 B)andf-3(4) nf1(B)

e) f(X —-A) andf(X) — f(4), where A < X = D,
(f) /7YX — 4) and f}(X) — f1(4), where 4 = X = R,.

9. Let / be a function. In what sense is it true that fof~! = [ and that
flof=1?

10. Let the functions f, g satisty g o /' = I, where D; = D,. Show that f has an
inverse function. Does it follow that ¢ = f~1?

(a)
(
(
(
(

11. In addition to the conditions given in Exercise 10, suppose fog = [,
where D, = D,. Show that g = f 1.

12. Prove that fo (goh) = (f o g) o h whenever both sides are defined.
13. Phrase the definition of index set in terms of function.

2. EQUIVALENCE RELATIONS

2.1 A natural generalization of the concept of function is that of relation,
which is defined to be an arbitrary subset of 4 x B. The idea here is that we
wish to ““relate” certain elements of 4 to certain elements of B, where, unlike
the situation for a function, an element a € 4 may have several correspondents
in B. When we say that a subset r of 4 x B is a relation from 4 to B we are
making specific the intuitive concept that those elements b € B that are related
to a given a € 4 by our particular relation r are those for which (a, b) € ». The
relation concept is a very general one and embraces many familiar mathe-
matical concepts (for instance, function, inequality of real numbers, similarity
of triangles). However, there is just one type of relation other than functions
which will concern us, namely, the equivalence relation.

2.2 A relation 7 from A4 to A4 is called an equivalence relation on A if it satisfies

i)

(a, b) € r implies (b, a) € r (symmetry);
ii) (a, a) e r for every a € 4 (reflexivity);
I

iii) If (@, b) e r and (b, ¢) €7, then (a, ¢) € r (transitivity).
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2.3 In working with an equivalence relation it is customary to use a symbol
somewhat resembling an equality sign to designate the relation between
elements. Thus we shall write a & b (read “a is equivalent to ") to mean
(a,b) er. (Of course, when different equivalence relations appear in a
discussion, we must use different symbols.) Thus the essential properties
of ~ are

1) a & b implies b X a;

Q

aforall ae 4;

Q

i) a
ili) ax band b x~ ¢cimply a = ¢.

It is clear that the congruence of triangles or #ih# sifnilarity of triangles
from geometry are examples of equivalence relationg on the set 1 all triangles.
Ordinary equality (identity) is perhaps the most familiar equivalence relation,
and in a sense every equivalence relation can be interpreted as a kind of
abstract equality. By way of illustration consider the concept of congruence
of two triangles, a and b, where we say that a is congruent to & if a can be
moved into coincidence with & by a rigid motion that does not alter the shape
or size of a. (We need not worry here about giving a precise meaning to this
last phrase.) Clearly, the intuitive idea that is meant to be conveyed by
congruence of triangles is that they are “abstractly identical”’, differing only
in their location. In this sense then, congruence of triangles might be con-
sidered equality, with the agreement that we choose to regard as irrelevant
the location of a triangle in space. In fact, some geometry books refer to
congruent triangles as “ equal”, though clearly they are not indistinguishable
if they are not at the same place. Likewise, similarity of triangles can be
thought of as equality, as determined by someone who chooses to neglect
both the location and the size of a triangle and to consider only its shape.

2.4 Situations similar to these are often encountered in mathematics. A set 4
of distinguishable elements is given, but for certain considerations it is desirable
to overlook some of the distinguishing features of the elements and to consider
certain elements of A as being ‘“‘abstractly identical”. Let us call them
equivalent instead of abstractly identical, and if a is equivalent to b, write
a ~ b. Then our intuitive idea of what “abstractly identical” should mean
demands that X satisfy conditions (i), (ii), (iii).

On the other hand, suppose a definite equivalence relation =~ is defined
on a set A. Call a subset B of A an equivalence class for the relation x if B
consists of all elements of A that are equivalent to some specific element of 4.
Because of (ii), B # @. Itis also apparent by (i) and (iii) that every element
of B is equivalent to every other element of B and that no element of B is
equivalent to an element of 4 — B. Thus the collection of all equivalence
classes is a collection of nonempty pairwise disjoint sets whose union is 4.
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Moreover, two elements of 4 are equivalent if and only if they belong to the
same equivalence class. We might say roughly that we have lumped together
(into one equivalence class) all equivalent elements. Often we find it con-
venient to regard the equivalence classes as entities and to abstract ideas about
them. In this way an equivalence relation on a set 4 leads to ‘““abstract
identification” of equivalent elements.

EXERCISES 2

1. Let ¢ be a fixed integer. Call two integers m and n congruent if m — n is
divisible by ¢g. Show that congruence is an equivalence relation on the set
of integers and describe the equivalence classes.

2. Let f be a function from 4 into B, with D, = A. If ay, a, € 4, declare a,
to be equivalent to a, iff f(a;) = f(a;). Show that this defines an equivalence
relation on A. Let A* be the set of equivalence classes. Define a function

Sf* on A* by f*(a*) = f(a) iff a€a*. Prove that this stipulation actually
defines a function, that D,. = A4*, that R, = R;, and that f* is one to one.

3. The symbol < defines a relation on the set of integers. Describe a set of
properties of < which you feel might be appropriate to generalize this
relation to a general set. (Compare 2.2.) Give some examples of relations
that have the properties that you have specified. Do the same for <.

4. Why is it incorrect to reason that, in 2.2, (ii) is a consequence of (i) and
(iii) because (i) implies that the hypothesis of (iii) is valid when ¢ = a?

3. REAL NUMBERS

Our primary purpose in this chapter is to define and study the set of complex
numbers. The set of real numbers is of fundamental importance to this study,
so we will briefly review its properties. Our procedure will be first to state a
set of postulates which characterize the set of real numbers. With this accom-
plished we will develop some of the properties of the real numbers which will
be useful in our consideration of the complex numbers. We first describe
accurately a kind of mathematical system in which the familiar rules are valid
for performing arithmetical operations.

3.1 Definition. A field F is a set that satisfies the following postulates.
The postulates of addition :

A,. To every two elements a, b € I there corresponds a unique element of F, called
the sum of a and b and designated a + b.

A,. Addition is commutative: a + b = b + a.

Aj;. Addition is associative: a + (b + ¢) = (a + b) + c.

Ay, There exists a unique element O € F such that a + O = a for every a € F.



