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PREFACE

THE ROLE OF UNSOLVED PROBLEMS

As mathematics becomes ever more complex, more structured, and more special-
ized, it is easy to lose sight of the fact that the research frontiers still contain many
unsolved problems that are of immediate intuitive appeal and can be understood
very easily, at least in the sense of understanding what a problem asks. Parts of
plane geometry and number theory are especially good sources of such intuitively
appealing problems, and those are the areas emphasized in this book. For each of
the presented problems, we look at its background, try to explain why some mathe-
maticians have found the problem of special interest, and tell about techniques that
have been used to obtain partial results. Some of the exercises will help out readers
establish partial results for themselves, and references are provided for those who
want to learn more about the problems.

All mathematical discoveries may be said to consist of the solution of unsolved
problems. Sometimes a question is answered almost as soon as it is formulated.
Then the question and its answer are published together, and the question never
becomes known as an unsolved problem. In other cases, a mathematical question
may be formulated long before anyone is able to answer it. If the question becomes
widely known, many researchers may direct their efforts toward answering it and
the unsolved problem may have a significant influence on the development of math-
ematics.

Some unsolved problems are conceptually very simple and specific—for exam-
ple, “Is the answer ‘yes’ or ‘no’?”, “What is the value of this function at a specified
point of its domain?” Others are conceptually sophisticated—for example, “How
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Xii PREFACE

can such and such a theory or argument be extended so as to apply to a certain more
general class of objects?” Both the simple and the sophisticated problems have
played an important role in the development of mathematics, and often they are
inextricably mingled. Some of the “simplest” unsolved problems, such as Fermat’s
last “theorem” (see Section 13) have led directly to some of the most sophisticated
mathematical developments and, in turn, to sophisticated unsolved problems. On
the other hand, the solution of a sophisticated problem often requires answering a
number of simple, specific questions. Thus it is probably unreasonable to try to de-
cide whether the simple or the sophisticated problems have been more important
in the development of mathematics. In any case, this book is devoted exclusively to
problems of the simple sort—ones whose statements are short and easy to under-
stand.

Some of the more modern areas of mathematics are poor sources for the sort
of unsolved problem that is emphasized here. If one thinks of mathematical disci-
plines as buildings, some could be represented by buildings that are very tall but also
quite narrow, with a few important research problems sprouting out of the roof. In
order to reach these unsolved problems, one must climb through the many lower
floors of the building, and on each floor must make one’s way through numerous
definitions and theorems that may be necessary for even understanding what the
unsolved problems are about. By contrast, we are concerned here with some parts
of mathematics that can be represented as broad, low buildings, with a high ratio of
roof area (research problems) to volume. Any particular problem can be reached,
at least in the sense of understanding what it asks, by entering the building through
the proper door and climbing only one or two flights of stairs. It is striking that plane
geometry and elementary number theory, the oldest branches of mathematics, still
offer such a large supply of easily understandable, intuitively appealing, unsolved
problems. This book contains some of our favorite examples from each subject.

Before proceeding to the problems themselves, we should admit that our pic-
ture of branches of mathematics as buildings is misleading in some important re-
spects. For example, we have pictured elementary number theory as a broad, low
building, and many mathematicians would think of the subject of algebraic geom-
etry as one of the tallest, most highly structured buildings. However, algebraic ge-
ometry has provided some of the most important tools for dealing with some of the
most “elementary” problems of number theory, such as Fermat’s last theorem. This
illustrates the intermingling of simple problems and sophisticated problems, and
the important distinction between understanding a problem in the sense of having
an intuitive grasp of what it asks, and the much deeper understanding that requires
knowing enough to have some chance of solving the problem or at least discovering
new results that are relevant to it. For each problem in this book, we hope to have
provided enough information to enable the reader to understand the problem in at
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least the first sense. It remains to be seen what is required for understanding in the
second sense. However, we don’t believe that all of the problems presented here
will require sophisticated methods for their solution. Probably some will be solved
by means of a single really clever idea. There’s no monopoly on clever ideas, and
your chance of solving some of the problems may be as good as anyone’s!

Part of the appeal of elementary problems is the feeling that they ought to have
solutions that are equally elementary. But elementary problems can have exceed-
ingly complex solutions. A notorious example is the four color theorem (every map
in the plane can be colored with four colors so that adjacent countries are colored
differently); its statement is simple but its proof, discovered in 1976 by K. Appel and
W. Haken, is long, subtle, and involves an extensive computer calculation. Another
example is a less well-known result due to P. Monsky: It is impossible to dissect a
square into an odd number of triangles having equal area (see Section 7 for a dis-
cussion of this result and its extensions). The only known proofs use a sophisticated
concept from field theory. Mathematics is full of simple-sounding statements that
have been proved, but whose proofs are complicated, using the most sophisticated
tools mathematicians know. But that’s not the worst of it. It may be that for cer-
tain elementary conjectures, no proof of either the conjecture or its negation exists.
Most interesting questions deal with infinitely many instances; indeed, much of the
power and beauty of mathematics consists of finding a finite proof that answers in-
finitely many instances of a question. As observed by Haken! in an interesting paper
that contains both details of the four color theorem’s proof and some philosophi-
cal observations, it may be that “infinitely many single statements of a conjecture
have infinitely many individual and significant differences so that a proof of the
conjecture is impossible since it would require infinitely many case distinctions.”
(For more on the possibility that simple problems are undecidable, see Section 20.)
Thus amateur and professional mathematicians are in comparable situations. An
amateur might spend years searching for an elementary solution to an elementary
unsolved problem, confident that such a solution exists. A professional, armed with
supercomputers and the cumulative technical knowledge of generations of brilliant
mathematicians, might attack a problem confident that a solution, perhaps a com-
plicated one, exists. But both run the danger of being stymied by the nonexistence
of the objects of their search.

Although we believe that most of our problems do have solutions, we would
not be surprised if, for most of them, the solutions seem much less elementary
than the problem statements. However, some problems that we expect to prove in-
tractable may turn out to be solvable after all. For example, among the geometric
problems that we originally planned for inclusion, both of us might well have cho-

1 “An attempt to understand the four color problem,” Journal of Graph Theory, 1 (1977) 193-206.
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sen the main problem of Section 9—the modern form of the problem of squaring
the circle—as the one least likely to be solved in the near future. But when the book
was nearly completed, that problem was settled by M. Laczkovich, who proved that
a circle (with interior) is equidecomposable to a square. His proof is quite com-
plicated, using tools that on first glance would seem to have little to do with the
problem.

ORGANIZATION OF THE BOOK

Each section of the book is devoted to a single problem or a related group of prob-
lems, and each section is divided into two parts. The first part is elementary. Its
main goal is to supply the necessary definitions, convey some intuitive feeling for
the problem, and present some easy proofs of relevant results. The second part
contains more advanced arguments and mentions references. We hope that all of
each first part and some of each second part will be accessible to undergraduate
mathematics majors, and that everything in the book will be accessible to all grad-
uate students of mathematics. On the other hand, since the presented problems
are unsolved, and since fairly extensive references are supplied, there may be some
interest in the research community as well.

The sections are arranged in three chapters. In each chapter, the first parts
are grouped together, followed by the second parts. Thus the reader may peruse
an entire collection of first parts without being distracted by technical details or
references, and may then consult the second parts and the references for more
information about whichever problems seem most appealing.
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TWO-DIMENSIONAL GEOMETRY

INTRODUCTION

Of the ideas that lead beyond the geometry of Euclid, the notion of a convex
set may be the one that would have been most easily understood by the ancient
Greeks. In fact, a close relative of this notion was defined by Archimedes. A set
is convex if it includes, with each pair of its points, the entire line-segment joining
them. (Intuitively, a convex set is one that has neither holes nor dents.) As a source
of appealing, easily stated unsolved problems, the study of low-dimensional convex
sets rivals number theory and graph theory. Thus it is not surprising that convex sets
play a central role in many of the sections of this chapter. However, there are also
problems that don’t involve convexity, and some of them involve modern (though
elementary) set-theoretical and topological notions.

In the title of this book, the term “plane geometry” was used for brevity. How-
ever, that may suggest an axiomatic approach, and our approach here is certainly
not axiomatic. Rather, our viewpoint is that the geometric objects really exist, and
we want to study them in an efficient way. For that purpose, the most appropri-
ate setting seems to be the cartesian plane R?, complete with its usual topology
and basic vector operations. The title of this chapter, Two-Dimensional Geome-
try, is intended to suggest that, although all of the main discussion is in R? and
the various Parts One are confined to R?, many of the problems have interesting
higher-dimensional analogues that are discussed briefly in Part Two.



2 INTRODUCTION

In each section, the “title problem” is the one that begins the section and is
stated in the Table of Contents. However, most of the sections include a variety of
other, equally interesting problems that are related in spirit to the title problem.
The variety is especially marked in Section 1, which concerns the role of reflections
in illumination and billiards.

Problem 6 is conceptually the simplest. It does not involve distance or angle or
area, only the incidence of points and lines. Problem 5 involves convex polygons as
well, and Problem 3 involves areas of unions of disks, but these problems would also
have been easily understood by the ancient Greeks. Problems 2 and 4 are simple,
but they do involve more general convex sets than the other problems just men-
tioned. Problems 7 and 8 concern subdivisions of the entire plane, rather than just
part of it. Problem 9 deals with a striking interaction between the simplest convex
sets (circles and squares) and sets that probably no one would agree to call “ge-
ometric figures.” Problem 10 involves some relationships between geometry and
number theory, while Problems 11 and 12 involve topological notions.

Several of the problems are striking for the great disparity between what is
known and what may be true. For some of them, this disparity can be expressed
in a quantitative way. Problem 3 originates from the conjecture that when several
congruent disks are pushed closer together, the area of their union can’t increase.
However, the best that has been proved is that it can’t increase by a factor of more
than 9. Problem 6 was motivated by a conjecture that when n points in the plane
are not all collinear, and when all the lines determined by pairs of these points are
added to the configuration, then one of the points is on at least 37 of the lines. Some
small counterexamples show that 2n doesn’t always work, but perhaps %n does. It
was proved initially (but not easily) that 101987, always works, and that has been
improved to 10~32n—still a long way from 3n. A more technical result in Section 1
involves a smoothness assumption for the boundary curvature of a convex billiard
table. The original theorem assumed the curvature to be 553 times differentiable.
The 553 has been reduced to 6, but a further reduction is probably possible.

The most easily stated problems are 8 and 10. Problem 8 asks, “What is the
minimum number of colors for painting the plane so that no two points at unit dis-
tance receive the same color?” It has been known since 1960, when the problem first
appeared in print, that the number is 4, 5, 6, or 7, but no one has been able to nar-
row the possibilities further. Problem 10 asks, “Does every simple closed curve in
the plane contain all four vertices of some square?” An affirmative answer has been
known since 1913 for all sufficiently smooth convex curves, and more recent results
have avoided the convexity assumption. However, there is a sense in which most
simple closed curves are not smooth at all, and thus it is possible that the answer
is negative for most curves. Despite their ease of statement (or perhaps because
of it!), Problems 8 and 10 have, like many of the other problems considered here,
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been the subject of incorrect published results. As we mentioned in the Preface, it
is tempting to believe that an easily stated problem should have an easy solution.
The reader is cautioned against believing that for most of the problems stated here.

There are other good sources of information about easily understood unsolved
geometric problems. We mention especially the book on tiling by B. Griinbaum
and G. Shephard [GS4] and the books on lattice point problems by J. Hammer
[Ham] and P. Erdés, P. Gruber, and Hammer [EGH]. In addition, there are three
excellent collections of unsolved problems that will soon become books—those of
Erd6s and G. Purdy [EP3], of H. Croft, K. Falconer, and R. Guy [CFG], and of
W. Moser and J. Pach [MP] (developed from an earlier collection of L. Moser).
We should also mention the numerous articles of Erdés, Erdés and Purdy, L. Fejes
T6th, Griinbaum, and H. Hadwiger, some of which are included in our list of ref-
erences. Another good source of geometric problems is the “Unsolved Problems”
section in the American Mathematical Monthly. And there are many other sources—
too many to mention them all. It seems clear that the oldest part of mathematics
will continue to provide challenges (and surprises) for many years to come.

1. ILLUMINATING A POLYGON

Problem 1

Is each reflecting polygonal region illuminable?

Imagine life in a two-dimensional world where electricity and skilled construc-
tion are very expensive but reflecting materials are cheap. One might live in a room
whose shape resembles that of Figure 1.1 and whose walls are mirrors, and one
might hope to illuminate the entire room by a single light source. Can this always
be done, regardless of the room’s shape? If it can be done, how should one discover
where to place the light source?

Light rays issue in all directions from the source, and each ray continues on its
way according to the usual rule: “angle of reflection equals angle of incidence.” The
room is illuminated by a given source if each point of the room lies on at least one
of the rays. For each position of the light source s, the points that are illuminated
directly from s (without using reflections) form a set that is geometrically simple,
for it’s a union of straight-line segments issuing from s. (Such a set is said to be star-
shaped from s). However, this simple picture rapidly becomes complicated as more
and more reflections are taken into account, and when the number of reflections is



