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Introduction

oped over 50 years to utilize chalcogenide glasses as infrared
optical materials. Chalcogenide glasses are based on the chal-
cogen elements sulfur, selenium, and tellurium excluding oxygen,
the first member of the family. The name is a misnomer since chalco-
gen is from the Greek meaning chalk former and oxygen is the only
member of the family that forms chalk. All its compounds are called
oxides. Methods used to identify qualitatively chalcogenide glass
compositions with promise to become useful infrared optical materi-
als are discussed. Once identified, the optical and related physical
properties must be measured quantitatively. The method best suited
for the production of homogeneous glass in high purity and quantity
must then be developed. Thus, a great deal of effort is required before
a glass composition is considered by optical designers ready for use
in an infrared system. For this reason, only a few glass compositions
have been fully developed and used in quantity over the years.
Infrared light by definition is light with a wavelength greater
than the sensitivity region of the human eye, 4000 to 8000 A. For
infrared discussions, the more commonly used terms are 0.4 to 0.8 pm
with um being the abbreviation for micrometers. Of special importance
are materials useful for infrared imaging systems designed to respond
to infrared energy transmitted through the atmosphere. Figure 1.1
illustrates infrared light absorption in the air at sea level due to water
vapor, carbon dioxide gas, and ozone. The bottom illustration is the
resultant total for the three gas molecules. Notice there are two
windows indicated where energy is transmitted well, from 3 to 5 um
(hot window) and about 7 to 14 pum (thermal window). The window
is called thermal since the peak of emitted radiation from a body at
room temperature, about 300 K, occurs in this window. Thermal
imaging of a living subject is based on emitted radiation, which is
transmitted in this atmospheric window. The hot window refers to
the fact that heated objects emit at the shorter wavelengths in this
range. Examples might be the tailpipe of a jetplane or a missile
exhaust.

I I The purpose of this book is to describe the technology devel-
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Ficure 1.1 Infrared absorption bands of primary atmospheric constituents for average
conditions at sea level.

Over the years, materials used in infrared systems have included
alkali halides, alkaline earth halides, melt formed semiconductors, vapor
grown fine-grain polycrystalline semiconductors, and chalcogenide
glasses. Each of the crystal materials has some advantages and some
disadvantages that will be discussed toward the end of this book.
However, this book will concentrate chiefly on chalcogenide glasses.
After 17 years at Texas Instruments (TI), the author left in 1977 to found
Amorphous Materials (AMI), a small company dedicated to producing
infrared transmitting glasses for use in infrared optical systems. The
company is still active in developing new glass compositions for new
applications.

Some crystalline materials were produced at AMI. The production
of vacuum float zoned silicon, gallium arsenide, and cadmium
telluride, all useful in infrared technology, will be described. Most of
the early glass work reported here was carried outat TTin government-
sponsored programs as indicated in the references. Discussions of
glasses developed at AMI and their applications will be given. Some
results of infrared techniques applied to semiconductors at TI will be



Introduction

described. Glasses have a major advantage over crystalline materials
in that they can be easily cast, molded, extruded, and drawn into
fiber. Such processes generally cannot be applied to crystalline
materials but were applied to chalcogenide glasses. Also, the
composition of a glass can be changed within limits to enhance
properties important to an application. Very little such latitude exists
with crystals. The ratios among constituent atoms of most crystalline
materials are fixed. Examples of how the composition of some glasses
was changed at AMI to enhance a property will be discussed.

Comments to the readers who are students: The author considers
himself a physical chemist. Chemistry is an applied science and mostly
empirical. Tools used while conducting a research project have
changed immensely since 1948 when this author started out, from
slide rules and burets to computers, infrared FTIR spectrophotometers,
Raman instruments, electron microscopes, and differential thermal
analysis (DTA) for glasses. Lasers were not even invented until 1959.
There was no material sciences school, only chemistry and physics.
Chemical structural theories have changed greatly based on results
from the new instruments and techniques. The language of science is
constantly changing, reflecting people’s increased understanding,
which improves their descriptions. Not nature! Nature never changes.
Avoid having a preconceived solution to a problem before you start.
Let nature guide you through the results of your experiments. Always
remember, it is the investigation that is important, not the investigator.
It is not important to be right at the start—only at the finish.
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CHAPTER 1

Transmission of
Light by Solids

1.1 Solids
In nature, material exists as gas, liquid, or solid. Gas atoms or mole-
cules are free to move within the confines of their container. Liquids
move to fill the shape of their container while solids are rigid in shape.
There is about a 1000-fold increase in density in going from gas to the
condensed state of liquid or solid. The atoms or molecules come
much closer together as a liquid and closer still as a solid. The dense
solid may have a precise three-dimensional spatial arrangement for
the atoms making up the solid that covers thousands of neighbors in
all three directions. When the long-range order is perfect, the solid
may be referred to as single-crystal. Or the order may be maintained
over limited atomic distances and be referred to as polycrystalline.
The atoms or molecules of liquids are free to move within their
arrangements continuously in any direction and are said to have no
long-range three-dimensional order. Order found is that of nearest
neighbors or second nearest neighbors or even more, but not long
range in the structural sense. Depending on elemental composition,
when the atoms or molecules of a solid come close together, they
begin to share their electronic bonding states, which results in forma-
tion of an energy structure for the solid. When excited, bonding
valence electrons are elevated into a higher conduction band state
and are free to travel through the solid as charge if an electric field is
applied. The energy difference between the valence state and the free
conduction state is called the bandgap of the solid. The vacancies left
in the valence band are called holes and can constitute charge flow
moving in the opposite direction to the field. The band structure is
well developed and precise in crystalline solids with good crystalline
perfection. Liquids and amorphous solid glasses are condensed states
but without long-range three-dimensional orders. A glass is referred
to as a disordered solid. The energy band structure may exist, but the
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1.2

Chapter One

energy level states in the band structure are not nearly as precise as in
a crystalline solid.

Beginnihwg of Tfansmission of Light—An Electronic
Transition

Generally speaking, infrared optical materials are insulators or semi-
conductors as judged by their bandgaps and resistivity. Photons of
light corresponding to energy greater than the bandgap of the solid
are strongly absorbed at the surface. As the wavelength is increased
and the photon energy decreased below the bandgap, light is trans-
mitted through the solid. The beginning of light transmission of a
solid occurs at the wavelength that corresponds to the bandgap
energy. The absorption of the photon is a very strong, quantized elec-
tronic transition. One may think of this energy as representing the
average ionization energy for the primary chemical bonds formed
between the atoms that make up the solid. If the required ionization
energy is large enough, transmission begins in the ultraviolet region
of the spectrum, as in the case for alkali halides or alkaline earth
halides. Then the solid appears water-clear or colorless. If it occurs in
the visible region, the solid appears colored. If the absorption edge
occurs in the infrared region, the solid appears metallic because all
visible light is strongly absorbed and reflected.

The use of infrared spectroscopy as an analytical tool to identify
and measure concentrations of organic compounds began in the late
1940s. Instruments, crude by today’s standards, used salt prisms to
disperse the light, salt windows for the instrument, and cells to contain
the samples being analyzed. Petroleum refineries used the infrared-
based technology for quality control in their laboratories. The band-
gaps for both the alkali halides and the alkaline earth halides occur in
the ultraviolet region and were not a factor in their infrared use. Most
of these ionic solids are soft, weak, and hygroscopic, making them
unsuitable for use outside of the laboratory.

The semiconductor revolution began in the early 1950s at Bell
Telephone Laboratories when Gordon Teal et al.! developed the abil-
ity to grow high-purity germanium in single-crystal form. The result
was the germanium transistor. Later in the 1950s, Gordon Teal joined
Texas Instruments and under his direction accomplished the same
feat for silicon, resulting in the silicon transistor. Both germanium
and silicon found use as infrared optical materials and as infrared
light detectors. Germanium windows and lenses became the optical
material standard for the industry due to their wide transmission,
2 to 20 pm, with very little change in refractive index (low dispersion)
and good physical properties. Silicon found use as a missile dome
material due to its superior physical properties such as strength and
hardness. The transmission range was 2 to 14 pm again with little



