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Preface

A perusal of many modern physical chemistry texts demonstrates that most authors
of these texts and the professors who use them, such as myself, expect students to
know a great deal more mathematics than is covered in the calculus courses normally
required for physical chemistry courses. Moreover, we honestly expect that our stu-
dents will know how to apply the mathematics they have learned to physical prob-
lems. Unfortunately, many of my colleagues and I have found that this generaily is
not the case. It was this observation, along with the fact that I was spending a great
deal of lecture time teaching mathematics rather than physical chemistry in my phys-
ical chemistry course, that inspired me to write the first edition of this text some 30
years ago.

It is my intention, therefore, that this third edition be used as a supplement
along with the student’s physical chemistry textbook, to help students either review
or, perhaps, learn for the first time those areas of mathematics that are essential to an
understanding of physical chemistry, and, more importantly, to apply that mathemat-
ics to physical problems. The purpose of the book is not to replace the mathematics
courses that are prerequisite to the physical chemistry course, but to be a how to do it
review mathematics textbook. Consequently, the problems at the end of each chapter
are designed to test the reader’s mathematical skills, not his or her skills in solving
physical chemistry problems.

Like the first two editions, the first five chapters concentrate on subject mat-
ter normally covered in prerequisite mathematics courses and should be a review.
Again, an emphasis in the chapter on integral calculus has been placed on using
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viii Preface

integral tables, and, in keeping with the original intent of the book, mathematical
rigor was kept at a minimum, giving way to intuition where possible.

The latter half of the text covers important material normally not covered in
prerequisite courses, but, for the most part, at an introductory level. For example,
the chapter on differential equations emphasizes the solution of second-order lin-
ear differential equations with constant coefficients, common to many simple
problems in wave mechanics. Also, as in the second edition, sections on the series
method of solving differential equations are included. The sections on Fourier se-
ries and Fourier transforms have been expanded in this edition to include discrete
Fourier transforms and well as continuous Fourier transforms. Discrete Fourier
transforms are important in many areas of spectroscopy, since they can be handled
by digital computers.

Finally, the chapter on numerical methods has been completely revised. In the
second edition, we concentrated on writing programs using BASIC to do the numer-
ical calculations. Over the recent years, however, there has been a move away from
using compiled programs for doing scientific computations toward the use of spread-
sheets, such as Microsoft Excel®, for such computations. Thus, the new chapter con-
centrates on using a spreadsheet to do many standard numerical calculations, such as
numerical integration, fitting curves to experimental data, and finding discrete Fouri-
er transforms of functions.

As I mentioned in the Preface to the second edition, a text such as this could
not be a success without the contributions of a number of people. I especially wish to
thank Professor John Bopp, Nazareth College; Professor Wayne Bosma, Bradley
University; and Professor Greg Peters, University of Memphis for their careful and
critical review of the second edition and their many helpful comments and sugges-
tions. I also would like to thank Professor John Wheeler of the University of Califor-
nia, San Diego, for finding a serious error in one of the examples in the chapter on
infinite series in the second edition that survived from the first edition.

I thank my editor John Challice, Project Manager Kristen Kaiser, Production
Editor Donna Young, and all those individuals at Prentice Hall ESM and Write With,
Inc. who helped to improve immensely the quality of the text.

Finally, I wish to thank my son, Stephen Barrante, who designed the cover for
this edition, my wife Marlene, and our family for their patience and encouragement
during the preparation of this book.

I welcome comments on the text and ask that any comments or errors found be
sent to me at jrbarrante @aol.com.

JAMES R. BARRANTE
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Coordinate Systems

CHAPTE

1-1 INTRODUCTION

A very useful method for describing the functional dependency of various properties
of a physicochemical system is to assign to each property a point along one of a set of
axes, called a coordinate system. The choice of coordinate system used to describe the
physical world will depend to a great extent on the nature of the properties being de-
scribed. For example, human beings are very much “at home” in rectangular space.
Look around you and note the number of 90° angles you see. Therefore, architects and
furniture designers usually employ rectangular coordinates in their work. Atoms and
molecules, however, live in “round” space. Generally, they operate under potential-
energy fields that are centrally located and therefore are best described in some form
of “round” coordinate system (e.g., plane polar or spherical polar coordinates). In
fact, many problems in physical chemistry dealing with atoms or molecules cannot be
solved in linear coordinates. We shall see, however, that things we are accustomed to
studying in linear coordinates, such as waves, look very different to us when they are
described in polar coordinates. Once we have come to terms with polar coordinates,
however, we will find that they are no more difficult to use than linear coordinates. We
begin our discussion with a general treatment of linear coordinates.

1-2 CARTESIAN COORDINATES

In the mid-17th century, the French mathematician René Descartes proposed a sim-
ple method of relating pairs of numbers as points on a rectangular plane surface,
today called a rectangular Cartesian coordinate system. A typical two-dimensional
Cartesian coordinate system consists of two perpendicular axes, called the
coordinate axes. The vertical axis generally is labeled the y-axis, while the horizon-
tal axis generally is labeled the x-axis." The point of intersection between the two
axes is called the origin.

'The correct mathematical designations of the vertical axis and the horizontal axis are the ordinate and
the abscissa, respectively. These terms, however, have fallen out of use over the years.



2 Chapter 1 Coordinate Systems

The application of mathematics to the physical sciences requires taking these
abstract collections of numbers and the associated mathematics and relating them to
the physical world. Thus, the aforementioned x’s and y’s could be pressures, vol-
umes, or temperatures describing the behavior of a gas or could be any pair of phys-
ical variables related to each other. For example, Fig. 1-1 shows the relationship of
the vapor pressure of water to its temperature. Note that, in designating any point on
a coordinate system, the x-coordinate is always given first. Thus, the notation
(333,149.4) refers to the point on the coordinate system shown in Fig. 1-1 whose
T-coordinate is 333 K and whose P-coordinate is 149.4 mm Hg.

The curve depicted in Fig. 1-1 can be described by the equation P = Ae 21/RT
where A H is the heat of vaporization of water, R is the gas constant, and A is a con-
stant. The equation describing the curve could just as easily have been written
y = Ae B*; however, not apparent in either equation is the fact that it only approx-
imates the behavior of the vapor pressure of a liquid with temperature, since the im-
plied conditions that the vapor phase behave ideally and that the heat of vaporization
be constant with temperature generally are not true. It is a knowledge of facts
such as these that continues to distinguish the science of physical chemistry from
“pure mathematics.”

Coordinate systems are not limited to plane surfaces. We can extend the two-
dimensional rectangular coordinate system just described into a three-dimensional
coordinate system by constructing a third axis perpendicular to the xy-plane and
passing through the origin. In fact, we are not limited to three-dimensional coordi-
nate systems, but can extend the process to as many coordinates as we wish or
need—to n-dimensional coordinate systems—although, as we might expect, the
graphical representation becomes difficult beyond three dimensions, since we are
creatures of three-dimensional space. For example, in wave mechanics, a field of
physics having to do with the mechanical behavior of waves, we usually describe the

800 (
600 -
o)
fas]
S 400 |-
a,
200 - (333, 149.4)
0 2 1 l 1 I
273 293 313 333 353 373

T (K)

Figure 1-1  Graph of vapor pressure of water versus temperature.



Section 1-3 Plane Polar Coordinates 3

/.

Figure 1-2 Amplitude of a one-dimensional transverse wave.

amplitude of a transverse wave by using an “extra” coordinate. Therefore, the ampli-
tude of a one-dimensional transverse wave—say, along the x-axis—is represented
along the y-axis, as illustrated for a simple sine wave in Fig. 1-2. (Keep in mind that
the wave itself does not move in the y-direction. Rather, the wave is a disturbance, or
a series of disturbances, traveling, in this case, only down the x-axis. We should not
confuse the motion of the wave with the motion of the medium producing the wave.)
A two-dimensional transverse wave in the xy-plane, such as a water wave moving
across the surface of a lake, requires a third coordinate (call it the z-axis) to describe
the amplitude of the wave—still easy to represent graphically and certainly within
the realm of our experience. Many problems in wave mechanics, however, require us
to describe the amplitudes of three-dimensional transverse waves graphically. In
order to do so we need a fourth coordinate. This presents a problem to creatures of
three-dimensional space, and a number of ingenious ways have been devised to get
around the problem. One way is to use the density of points on a three-dimensional
graph to represent the amplitude of the wave.

In any of the coordinate systems described, it is useful to define a very small,
or differential, volume element

dr =dq,dg, dg;...dq, (1-1)

where dg; is an infinitesimally small length along the ith axis. In the three-dimensional
Cartesian coordinate system shown in Fig. 1-3, the volume element is simply

dr = dxdydz (1-2)

1-3 PLANE POLAR COORDINATES

Many problems in the physical sciences cannot be solved in rectangular space. For
this reason, we find it necessary to redefine the Cartesian axes in terms of what



4 Chapter 1 Coordinate Systems

dy

dz

dx

dr = dxdydz

Figure 1-3 Differential volume element
x for a Cartesian coordinate system.

normally are referred to as “round” or “curvilinear” coordinates. Consider the dia-
gram in Fig. 1-4. It is possible to associate every point on this two-dimensional co-
ordinate system with the geometric properties of a right triangle. Note that the
magnitude of x is the same as the length of the side b of the triangle shown and that
the magnitude of y is the same as the length of the side a. Since

b
sin § = = and cosf = — (1-3)
r r
Wwe can write
x=b=rcos§ and y=a=rsing (1-4)
y
i
» (1,6)
v |
‘a
b\ !
—> X

Figure 1-4  Plane polar coordinates.



Section 1-4 Spherical Polar Coordinates 5

Therefore, every point (x, y) of the two-dimensional coordinate system can be speci-
fied by assigning a value for r and a value for 6 at that point. This type of graphical
representation is called a plane polar coordinate system. In such a coordinate sys-
tem, points are designated by the notation (r, @). Equations (1-4) are known as
transformation equations; they transform the coordinates of a point from polar coor-
dinates to Cartesian (linear) coordinates. The reverse transformation equations can
be found by simple trigonometry. We have

y _rsinf
X rcos 6

=tanf or 0= tan_1<%) (1-5)

and

r=(x*+ yH”? (1-6)

1-4 SPHERICAL POLAR COORDINATES

While there are not many applications of plane polar coordinates to chemistry, one
extension of plane polar coordinates to three dimensions leads to the spherical polar
coordinate system, shown in Fig. 1-5. This system does have numerous applications
to physical chemistry, particularly in those areas associated with the structure of
atoms and molecules. A point in the spherical polar coordinate system is represented
by three numbers: r, the distance of the point from the origin, normally called the
radius vector; 0, the angle that the radius vector r makes with the z-axis; and ¢, the
angle that the line O A makes with the x-axis. Since

c d a
cos¢p =—, singp =—, and sinh =— 1-7
b= ¢ =" i p (1-7
Z:
A
(r, 0, ¢)
b!
r :
b
0 i
CO¢ P’ : >y
_______ e

Figure 1-5 Spherical polar coordinates.
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dr = r’sin 0 dr d6 d¢

rsing Tsinfdé

Figure 1-6 Differential volume element in
spherical polar coordinates.

and since the length of ¢ is numerically equal to x, d to y, and b to z, we can write

= acos ¢ = rsin 6 cos ¢
asin ¢ = rsin 6 sin ¢ (1-8)
r cos 6

4

The reverse transformation equations are found as follows:

y  rsin@sin ¢ _1(y)

—_—= = =t — l-

X  rsinfcos ¢ Wig o ¢ an X (-9
r=(x%+ y* + )2 (1-10)

1 Z
(x2 + y2 + Z2)1/2

cos g = % or 6 = cos” (1-11)

The differential volume element in spherical polar coordinates is not as easy to
determine as it is in linear coordinates. Recalling, however, that the length of a cir-
cular arc intercepted by an angle 6 is L = rf, where r is the radius of the circle, we
can see from Fig. 1-6 that the volume element is

dr = (dr)(rsin @ de)(r do) = r’sin 0 dr d6 d¢ (1-12)

Example
Determine the values of r, 8, and ¢ for the point (3, =2, 1).
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Solution

x=3,y=—2,andz = 1:
r=VaZl+ 2 +2=Vo+4+1=\V14=3742

= cosl<i> = cosfl(g%) = 74.50°
-2
¢ = tan_1<£> = tan_1<?> = —33.69°

1-56 COMPLEX NUMBERS

S
|

A complex number is a number composed of a real part x and an imaginary part iy,
wherei = V—1.A complex number is thus represented by the equation z = x +1iy.
Actually, all numbers are complex numbers and can be described by the same equa-
tion; it is just that for real numbers, y = 0, while for pure imaginary numbers, x = 0.

Like real numbers, complex numbers can be represented on a coordinate sys-
tem. The real part of the complex number is designated along the x-axis, while the
pure imaginary part is designated along the y-axis, as shown in Fig. 1-7. Since
x = rcosfand y = rsin 6, any complex number can be written as

z=x+iy=rcosf + risin@ = r(cos @ + isin ) (1-13)

Moreover, since every point in the plane formed by the x- and y-axes represents a
complex number, the plane is called the complex plane. In an n-dimensional coordi-
nate system, one plane may be the complex plane.

>

Figure 1-7 The complex plane.
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The value of r in Equation (1-13), called the modulus or absolute value, can be
found by the equation

r=(x*+ y)"? = ] (1-14)

The angle 0, called the phase angle, simply describes the rotation of z in the complex
plane. The square of the absolute value can be shown to be identical to the product of
z = x + iy and its complex conjugate z* = x — iy. The complex conjugate of a
complex number is formed by changing the sign in front of the imaginary part. The
product of a complex number and its complex conjugate is always a real number:

¥z = (x —iy)(x + iy) = x* + y? = |7/ (1-15)

To find another useful relationship between sin 6 and cos 6 in the complex
plane, let us expand each function in terms of a Maclaurin series. (Series expansions
are covered in detail in Chapter 6.) We have

e 6 ¢
sm0=0——3!+—5!——7!+—--~ (1-16)

# 6 6
cos0=1——2!+—4!——6!+—~~ (1-17)

where n! (n factorial) is n! = (1)(2)(3)(4)...(n — 1)(n). Hence,

. i
cosB+151n0—1+10—~2T—?!--~ (1-18)

But this is identical to the series expansion for e’

ei0=1+i0—g—?—i3i'3--- (1-19)
Hence, we can write
e = cos® + ising (1-20)
and
z = re® (1-21)
By the same method, it can be shown that
e =cosf — ising (1-22)
and
z*¥ = re® (1-23)

Equations (1-20) and (1-22) are known as Euler’s (pronounced “oiler’s™) relations.



