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Preface

Nonlinear systems are generic in the mathematical representation of physical
phenomena. It is unusual for one to be able to find solutions to most nonlin-
ear equations. However, a certain physically significant subclass of problems
admits deep mathematical structure that further allows one to find classes of
exact solutions. Solitons are a particularly important subclass of such solutions.
Solitons are localized waves that, in an appropriate sense, interact elastically
with each other. They have proved to be extremely interesting to physicists and
engineers due, in part, to their localized and stable nature.

This broad field of study is sometimes called “soliton theory™ or “integrable
systems.” This field has witnessed numerous important developments, which
have been studied intensively worldwide over the past 30 years. Some of the
directions that researchers have pursued include the following: direct methods
to find solutions; studies of the underlying analytic structure of the equations;
associated Painleve-type solutions and relevant generalizations; tests to locate
integrable systems; studies of the underlying geometric structures inherent in
integrable systems: Bicklund and Darboux transformations, which can be used
to produce new classes of solutions; and so on.

In principle, one would like to be able to solve the general initial-value prob-
lem associated with these special nonlinear soliton systems. Depending on the
boundary conditions under consideration, sometimes this is feasible. More-
over, in some cases, the mathematical representation is constructive, useful,
and indeed elegant. The case for which the Cauchy problem admits a complete
solution and the qualitative properties of the solution are well understood cor-
responds to initial data decaying sufficiently rapidly at infinity. Because of the
constructive and relatively explicit nature of the solution, this case has received
considerable attention. The method of solution is usually referred to as the
inverse scattering transform (IST). The IST applies to many interesting nonlin-
ear soliton systems, including nonlinear partial differential equations in 1 + 1

Vil



viii Preface

(one space—one time) and 2 + 1 (two space—one time) dimensions, nonlin-
ear discrete (difference) evolution equations, and singular integro-differential
equations. A discussion of the IST as it applies to many of these cases can be
found in various monographs (cf. [6]).

Nevertheless, there are particular problems that, because of their wide appli-
cability, deserve special attention. It is the purpose of this book to investigate one
such important set of equations: nonlinear Schrodinger (NLS) systems. NLS
systems in continuous media have been studied heavily since the mid-1960s.
The continuous scalar NLS equation arises in the prototypical situation govern-
ing slowly varying waves of small amplitude (cf. [30]). In the early 1970s, it was
shown [91] that the NLS equation governs the long-distance pulse propagation
in optical fibers. In the late 1980s and 1990s, it was discovered [131], [122]
that vector NLS systems govern the propagation of polarized waves in optical
fibers. Today, these NLS equations, with suitable modifications and additional
terms, are used routinely to make predictions about the transmission of infor-
mation in fibers. Without doubt, wave transmission in optical fibers, used for
communication purposes, is an application of critical importance.

In recent years there has developed significant interest in the study of non-
linear waves in media that are governed by nonlinear semi-discrete evolution
systems (discrete in space—continuous time). Once again there is a class of
physically interesting nonlinear systems that includes the so-called discrete
NLS equations. These discrete NLS equations reduce to the continuous NLS
equation when the discretization parameter vanishes.

For certain scalar- and vector-continuous and discrete NLS systems, the IST
method can be applied in an effective and complete way. The initial-value prob-
lem, for given data decaying sufficiently rapidly at infinity, can be linearized
in terms of integral equations. Multisoliton solutions can be obtained in all
cases. This is described in detail in this book. In an appendix we also describe
the IST associated with another class of important discrete equations: the Toda
lattice [165] and the so-called nonlinear ladder network [121], [98]. While the
research literature has many (but not all) of the results obtained here, it requires
researchers to access numerous papers. Early fundamental research on NLS sys-
tems appears in the papers of Zakharov and Shabat [192], who first analyzed
the scalar-continuous NLS equation; Manakov [120], regarding the continuous-
vector NLS equation; and by Ablowitz and Ladik [11, 12], who introduced the
scalar integrable discrete NLS equation. The vector extension of the discrete
NLS system is more recent (cf. [18]). The unified description of these phys-
ically interesting integrable discrete and continuous NLS systems within the
context of the IST methodology does not appear anywhere else. One of our mo-
tivations in writing this book was to develop the direct and inverse scattering
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formalism based on the Riemann—Hilbert approach. From a pedagogical point
of view, readers will find that the structure follows the one laid out for the
Korteweg—de Vries equation in the monograph of Ablowitz and Clarkson [6].
Here we have also attempted to include many of the mathematical details, to
make the book suitable for students as well as researchers who wish to study
this topic.

We gratefully acknowledge support for these studies by the National Sci-
ence Foundation, the Air Force Office of Scientific Research, and the Colorado
Commission on Higher Education.
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Chapter 1

Introduction

1.1 Solitons and soliton equations

Ever since the observation of the “great wave of translation™ in water waves,
by J. Scott Russell in 1834 [146, 147] while he rode on horseback near a nar-
row canal in Edinburgh, localized (nonoscillatory) solitary waves have been
known to researchers studying wave dynamics. Despite Russell’s detailed ob-
servations, it was many years before mathematicians formulated the relevant
equation, now known as the Korteweg—de Vries (KdV) equation that governs
those waves (cf. [38, 39, 112]). From the period 1895-1960, the study of water
waves was essentially the only application in which solitary waves were found.
However. in the 1960s it was discovered that the KdV equation is a relevant
model in many other physical contexts, such as plasma physics, internal waves,
lattice dynamics, and others. Critically, in their study of the Fermi—Pasta—Ulam
lattice equation [75] Zabusky and Kruskal (1965) found that the KdV equation
was the governing equation (cf. [189]). Moreover, in a wholly new discovery,
Zabusky and Kruskal observed that the solitary waves of KdV are “elastic”
in their interaction. That is, the solitary waves pass through one another and
subsequently retain their characteristic form and velocity. Zabusky and Kruskal
called these elastically interacting solitary waves solitons. The work of Gardner,
Green, Kruskal, and Miura [82] showed how direct and inverse scattering tech-
niques could be used to linearize the initial-value problem of KdV. The soli-
tons also were shown to correspond to eigenvalues of the time-independent
Schrodinger equation. The remarkable discovery of the soliton was the first
in a chain of events that culminated in a mathematical theory of solitons in
KdV. This work opened a rich vein of research that continues today, more than
35 years later. Further discussion of both the historical background and subse-
quent development of soliton theory can be found in [21].
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Subsequent to the development of a mathematical theory of the solitons of
KdV, further research revealed that solitons, with their distinctive elastic in-
teractions, arise in numerous important physical systems. These systems are
governed, respectively, by a diverse collection of evolution equations that are
characterized mainly by the fact that they admit soliton solutions. For example,
soliton solutions have been found in a number of nonlinear partial ditferential
equations in 1 + 1 dimensions (i.e., one space and one time dimension) and
2 + 1 (i.e., two spatial dimensions and one time dimension). In addition, soli-
ton solutions have been found in semi-discrete (discrete in space, continuous
in time) and doubly discrete (discrete in space and time) nonlinear evolution
equations and in nonlinear singular integro-differential equations, among oth-
ers. A survey of some of these can be found in [6]. It should also be noted
that there is a four-dimensional system, referred to as the self-dual Yang—Mills
(SDYM) equations, that plays an important role in the study of soliton theory or
integrable systems. Indeed, the SDYM equations can be viewed as a “master”
integrable system from which virtually all other systems can be obtained as spe-
cial reductions (cf. Atiyah and Ward [25]; Ward [181, 182, 183]; Belavin and
Zakharov [29]; Mason et al. [124, 125]; Chakravarty et al. [50, 51]; Maszczyk
et al. [126]; Ablowitz et al. [5]).

Researchers in physics and engineering have understood that stable localized
solitary waves, even those that do not have the special property of elastic inter-
action, have many important applications, and their study has led to substantial
research in specialized fields (e.g., nonlinear optics) all by itself. Nevertheless,
the systems in which the solitary waves interact elastically, the “true” soliton
systems, are important special cases. Moreover, there is an intrinsic richness in
the mathematical theory of these soliton systems. Accordingly, the field of re-
search associated with integrable systems has grown, developed, and expanded
in many directions. One centrally important issue is the method of solution,
sometimes referred to as the inverse scattering transform (IST), for these soli-
ton equations. For a number of physically significant equations, the IST can
be carried out in an explicit, effective, and illuminative manner. In particular,
the IST is a fruitful approach, and it is the basis for the study of the nonlinear
Schrodinger systems described in this book.

There are numerous books, review articles, and edited collections (see, for
instance, [6, 21, 47, 65, 74, 140]) that delve widely and deeply into the theory
of integrable systems. In this book, we give a detailed description of both the
IST and the soliton solutions of integrable nonlinear Schrodinger systems,
which are mathematically and physically important soliton equations. The
collection of systems examined in this book comprises both continuous and
semi-discrete systems of equations. As will be described in Section 1.4, these
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particular systems arise in the modeling of a wide array of physical wave phe-
nomena. In this book, we present most of the known results for these nonlinear
Schrédinger systems, as well as some new ones, in a comprehensive, unified
framework built with the mathematical machinery of the inverse scattering
transform.

1.2 The inverse scattering transform — Overview

The IST is a method that allows one to linearize a class of nonlinear evolution
equations. In doing so one can obtain global information about the structure of
the solution. In many respects, one can view the IST as a nonlinear version of
the Fourier transform.

The solution of the initial-value problem of a nonlinear evolution equation
by IST proceeds in three steps, as follows:

1. the forward problem — the transformation of the initial data from the original
“physical” variables to the transformed “scattering” variables;

2. time-dependence —the evolution of the transformed data according to simple,
explicitly solvable evolution equations;

3. the inverse problem — the recovery of the evolved solution in the original
variables from the evolved solution in the transformed variables.

In fact, with the IST machinery one can do more than solve the initial-value
problem; one also can construct special solutions of the evolution equation by
positing an elementary solution in the transformed variables and then applying
the inverse transformation to obtain the corresponding solution in the original
variables. In general, the soliton and multisoliton solutions of soliton equations
can be constructed in this way. In particular, in the subsequent chapters of this
book, we explicitly construct the soliton solutions of four different nonlinear
Schrodinger (NLS) systems. Moreover, one can in principle obtain the long-time
asymptotics of solutions. In this book, we obtain formulas for the collision-
induced phase shifts of solitons in NLS systems, including the polarization
shift of solitons in the vector systems, from the asymptotics of the associated
scattering data.

An essential prerequisite of the IST method is the association of the nonlinear
evolution equation with a pair of linear problems, a linear eigenvalue problem
and a second associated linear problem, such that the given evolution equation
results as the compatibility condition between them. The pair of linear operators
used to construct the associated linear problems is sometimes referred to as a
“Lax pair,” due to a formulation by Lax [115]. The solution of the nonlinear
evolution equation appears as a coefficient in the associated linear eigenvalue
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problem. For example, in the work of Gardner et al., the solution of the KdV
equation is associated with the potential in the linear Schrodinger equation. The
eigenvalues and continuous spectrum of this linear eigenvalue problem consti-
tute the transformed variables. The second associated linear problem determines
the evolution of the transformed variables.

The associated eigenvalue problem introduces an intermediate stage in both
the forward and inverse problems of the IST. In the forward problem, the first
step is to construct eigenfunction solutions of the associated linear problem.
These eigenfunctions depend on both the original spatial variables and the
spectral parameter (eigenvalue). Second, with these eigenfunctions, one deter-
mines scattering data that are independent of the original spatial variables. In
the inverse problem, the first step is the recovery of the eigenfunctions from the
(evolved) scattering data. Finally, one recovers the solution in the original vari-
ables from these (evolved) eigenfunctions. As noted previously, the evolution
of the scattering data is determined by the second associated linear operator
and can be computed explicitly.

The properties of the eigenfunctions are key to the formulation of the inverse
problem. In general, the solutions of the associated eigenvalue problem also
satisfy linear integral equations. For the NLS systems discussed here (as well
as other soliton equations in | + | dimensions), by using such integral equations
one can show that the eigenfunctions are sectionally analytic functions of the
spectral parameter. By taking into account the analyticity properties of the eigen-
functions, one can formulate the inverse problem (in particular, the recovery of
the eigenfunctions from the scattering data) as a generalized Riemann—Hilbert
problem. The Riemann—Hilbert problem is then transformed into a system of
linear algebraic—integral equations. Typically in the formulation of the IST, and
in particular for the nonlinear Schrodinger systems considered in this book, the
scattering data satisfy symmetry relations that are independent of the evolution.
These symmetries in the scattering data are essential and must be taken into
account in the solution of the inverse problem.

As explained previously, to apply the IST to a nonlinear evolution equation,
one must first find a pair of linear operators that can be associated with the
nonlinear equation. However, the general method of construction of the Lax
pair for a given evolution equation remains on open problem. Nevertheless, for
several equations of physical and mathematical interest. such a pair has been
found and the IST developed.

In a major step forward, following the works of Gardner et al. [82] and Lax
[115],1in 1972 Zakharov and Shabat [ 192] showed that the method also could be
applied to another physically significant nonlinear evolution equation, namely.
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the nonlinear Schrodinger equation (NLS). Subsequently, Manakov extended
this approach to the solution of a pair of coupled NLS equations [120]. In fact,
Manakov’s work applies equally well to a system of N coupled NLS equations,
a system that we refer to as vector NLS (VNLS). Using these ideas, Ablowitz,
Kaup, Newell, and Segur developed a method to find a rather wide class of
nonlinear evolution equations solvable by this technique [10]. In their work
they named the technique the inverse scattering transform (IST). Later, Beals
and Coifman analyzed the direct and inverse scattering associated with higher
order systems of linear operators [28].

The IST has been extended to semi-discrete nonlinear evolution equations
(discrete in space and continuous in time) as well as doubly discrete (discrete in
both space and time) systems. Flaschka adapted the IST to solve the Toda lattice
equation [79], and Manakov used a similar formulation to solve a nonlinear
ladder network [121]. Subsequently, Ablowitz and Ladik developed a method
to construct families of semi-discrete and doubly discrete nonlinear systems
along with their respective linear operator pairs, as required for the solution of
the nonlinear systems via the IST [11, 12] (see also [21]). Included in the for-
mulation of Ablowitz and Ladik are an integrable semi-discretization of NLS
(which we refer to as integrable discrete NLS, or IDNLS) as well as a doubly
discrete integrable NLS. In Chapter 5 we will further extend the IST method to
an integrable semi-discretization of the VNLS that was introduced in [18].

While the work mentioned in the preceding paragraphs consists of applica-
tions of the IST method to 1 4+ 1-dimensional evolution equations, since the
early 1980s significant progress has also been made in the extension of the
IST approach to 2 + 1-dimensional systems. For example, the Kadomtsev—
Petviashvili equation [100], which is a 2 + I-dimensional generalization of
the KdV equation, and the Davey—Stewartson equation [59], which is a natural
2 + 1-dimensional integrable extension of the NLS equation, can be solved via
the IST. However, the extension of the IST to such systems is beyond the scope
of this book. A review of some developments in the application of the IST to
2 + l-dimensional systems can be found in [6].

It should also be noted that IST for periodic and other boundary conditions
has been considered, but we will not discuss this here. Additional references
can be found in the Bibliography.

1.3 Nonlinear Schrodinger systems

The scalar nonlinear Schrodinger (NLS) equation

iqr =qu 21917 q (1.3.1)
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is a physically and mathematically significant nonlinear evolution equation. It
results from the coupled pair of nonlinear evolution equations

iq = qui —2rq* (1.3.2a)
—ir; = ey —2qr? (1.3.2b)

if we let r = Fq*.

The NLS equation (1.3.1) arises in a generic situation. It describes the evolu-
tion of small amplitude, slowly varying wave packets in nonlinear media [30].
Indeed, it has been derived in such diverse fields as deep water waves [190, 31];
plasma physics [191]; nonlinear optical fibers [91, 92]; magneto-static spin
waves [194]; and so on. Mathematically, it attains broad significance because
it is integrable by the IST [192], it admits soliton solutions, it has an infinite
number of conserved quantities, and so on.

We also note that the form of the NLS equation (1.3.1) with a minus sign in
front of the nonlinear term is sometimes referred to as the “defocusing” case. The
defocusing NLS equation does not admit soliton solutions that vanish at infinity.
However, it does admit soliton solutions that have a nontrivial background
intensity (called dark solitons) [92, 193]. We will only discuss the IST for
functions decaying sufficiently rapidly at infinity.

The vector nonlinear Schrodinger equation,

iq’(li — qil\) +2(|q(l)|3 -+ |q(2)ll) q(l) (]333)
ig” =42 +2(19"F + 19°1) ¢, (1.3.3b)

arises, physically, under conditions similar to those described by the NLS when
there are two wavetrains moving with nearly the same group velocities [144,
185]. Moreover, VNLS models physical systems in which the field has more
than one component; for example, in optical fibers and waveguides, the propa-
gating electric field has two components that are transverse to the direction of
propagation. Manakov [120] first examined equation (1.3.3) as an asymptotic
model for the propagation of the electric field in a wageguide. Subsequently,
this system was derived as a key model for lightwave propagation in optical
fibers (cf. [72], [122], [131], [179]).

In the literature, the system (1.3.3) is sometimes referred to as the coupled
NLS equation. This system admits vector—soliton solutions, and the soliton col-
lision is elastic. Moreover, the dynamics of soliton interactions can be explicitly
computed [120]. (In [142] a different point of view is discussed.) Vector—soliton
collisions are analyzed in Sections 4.3 (continuous) and 5.3 (discrete). In these
sections, the elasticity of vector—soliton interactions and the order-dependence
of these interactions are described in detail.
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Both the VNLS equation (1.3.3) and its generalization,
iq, = qu £21lq)’ q. (1.3.4)

where q is an N-component vector and || - | is the Euclidean norm, are integrable
by the IST. In [120] only the case N = 2 is studied, but the extension to more
components is straightforward. The N-component equation can be derived,
with some additional conditions, as an asymptotic model of the interaction of
N wavetrains in a weakly nonlinear, conservative medium (cf. [144]).

In optical fibers and waveguides, depending on the physics of the particular
system, the propagation of the electromagnetic waves may be described by
variations of equation (1.3.3). Note that the VNLS equation is the ideal (exactly
integrable) case. For example, a model with physical significance is [131, 132,
150, 184, 187]

iql(l) :q-l\.|‘)+2(|q(l)|2+ B|q('."|-.’)q(|) (1358)

iq’(’_’) — qlt\l) 42 (qu(|)|2 + lq(2)|2) (1(2)- (l35b)

Ry

which is equivalent to equation (1.3.3) when B = 1. However, based on the
properties of equations (1.3.5), apparently it is not integrable when B # 1 (see
the discussion in [18]).

The VNLS (1.3.4) has a natural matrix generalization in the system

—iR, = R, — 2RQR, (1.3.6b)

where Qand Rare N x M and M x N matrices, respectively. When R = Q%
(here and in the following, the superscript H denotes the Hermitian, i.e., con-
jugate transpose), the system (1.3.6a)—(1.3.6b) reduces to the single matrix
equation

iQ = Q.. £2QQ"Q, (1.3.7)

which we refer to as matrix NLS or MNLS. The VNLS corresponds to the
special case when Q is an N-component row vector and R is an N-component
column vector, or vice versa. In particular, we obtain the system (1.3.3) when
M=1and N =2.

Both the NLS and the VNLS equations admit integrable discretizations that,
besides being used as the basis for constructing numerical schemes for the
continuous counterparts, also have physical applications as discrete systems
(see, e.g., Aceves et al. [22, 23]; Braun and Kivshar [40]; Christodoulides
and Joseph [54]; Claude et al. [55]; Darmanyan et al. [57, 58]; Davydov [60,
61, 62]; Eilbeck et al. [69]; Eisenberg et al. [70, 71]; Flach et al. [76, 77];



