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Preface

Computation is an integral part of modern science and the ability to
exploit effectively the power offered by computers is therefore essential to
a working physicist. The proper application of a computer to modeling
physical systems is far more than blind “number crunching,” and the
successful computational physicist draws on a balanced mix of analytically
soluble examples, physical intuition, and numerical work to solve problems
that are otherwise intractable.

Unfortunately, the ability “to compute” is seldom cultivated by the
standard university-level physics curriculum, as it requires an integration
of three disciplines (physics, numerical analysis, and computer program-
ming) covered in disjoint courses. Few physics students finish their un-
dergraduate education knowing how to compute; those that do usuaily
learn a limited set of techniques in the course of mdependent work, such
as a research project or a senior thesis.

The material in this book is aimed al refining computational skills
in advanced undergraduate or beginning graduate students by providing
direct experience in using a computer to model physical systems. Its scope
includes the minimum set of numerical technique: nceded to “do physics”
on a computer. Each of these is developed in the text, often heuristically.
and is then applied to solve non-trivial problems in classical, quantum,
and statistical physics. These latter have been chosen to enrich or extend
the standard undergraduate physics curriculum, and so have considerable
intrinsic interest, quite independent of the computational principles they
illustrate.

This book should not be thought of as setting out a rigid or defini-
tive curriculum. I have restricted its scope to calculations that satisfy
simultaneously the criteria of illustrating a widely applicable numerical
technique, of being tractable on a microcomputer, and of having some
particular physics interests Several important numerical techniques have
therefore been omitted, spline interpolation and the Fast Fourier Trans:
form among them. Computational Physics is perhaps best thought of as
establishing an environment offering opportunities for further explotration.
There are many possible extensions and embellishments of the material,
presented; using one’s imagination along these lines is one of the more
rewarding parts of working through the book.



Preface

C'omputational Physics is primarily a physics text. For maximum
benefit, the student should have taken, or be taking, undergrad-
uate courses in classical mechanics, quantum mechanics, statistical me-
chanics, and advanced calculus or the mathematical methods of physics.
This is not a text on numerical analysis, as there has been no attemp! at
rigor or completeness in any of the expositions of numerical techniques.
However, a prior course in that subject is probably ot essential; the dis-
cassions of numerical techniques should be accessible to a student with
the physics background outlined above, perhaps with some reference to
any one of the excellent texts on numerical analysis {{or example, [Ac70],
'Burll, or [Sh84]). This is also not a text on computer programming. Al-
though T'have tried to follow the principles of good programming through-
ot (see Appendix B), there has been no attempt to teach programming
per se. Indeed, techuiques for organizing and writing code are somewhat
seripheral to the main goals of the book. Some familiarity with program-
arine, at least to the extent of a one-semester introductory course in any
af the standard high-level languages (BASIC, FORTRAN, PASCAL, C),
is therefore essential.

The choice of language invariably invokes strong feclings among sci-
entists who use computers. Any language is, after all, only a means of
expressing the concepts underlying a program. The contents of this book
are therefore relevant no matter what language one works in. However,
some language had to be chosen to implement the programs, and I have
selected the Microsoft dialect of BASIC standard on the IBM PC/XT/AT
computers for this purpose. The BASIC language has many well-known
deficiencies; foremost among them being a lack of local subroutine vari-
ables and an awkwardness in expressing structured code. Nevertheless, I
believe that these are more than balanced by the simplicity of the language

~and the widespread fluency in it, BASIC’s almost universal availability

nn the microcomputers most likely to be used with this book, the exis-
tence of both BASIC interpreters convenient for writing and debugging
programs and of compilers for producing rapidly executing finished pro-
grams, and the powerful graphics and I/O statements in this language.
! expect that readers familiar with some other high-level language can
learn enough BASIC “on the fly” to be able to use this book. A synopsis
of the language is contained in Appendix A to help in this regard, and
‘urthier information can be found in readily available manuals. The reader
may, of course, elect to write the programs suggested in the text in any
convenient language.

This book arose out of the Advanced Computational Physics Lab-
oratory tanght to third- and fourth-year undergraduate Physics majors



Preface  vii

at Caltech during the Winter and Spring of 1984. The content and pre-
sentation have benefitted greatly from the many inspired suggestions of
M.-C. Chu, V. Pénisch, R. Williams, and D. Meredith. Mrs. Meredith
was also of great assistance in producing the final form of the manuscript
and programs. I also wish to thank my wife, Laurie, for her extraordinary
patience, understanding, and support during my two-year involvement in
this project.

Steven E. Koonin
Pasadena
May, 1985



Preface to the FORTRAN Edition

At the request of the readers of the BASIC edition of Computational
Physics we offer this FORTRAN version. Although we stand by our
original choice of BASIC for the reasons cited in the preface to the BASIC
edition it is clear that many of our readers strongly prefer FORTRAN,
and so we gladly oblige. The text of the book is essentially unchanged,
but all of the codes have been translated into standard FORTRAN-77 and
will Tun (with some modification) on a variety of machines. Although the
programs will run significantly faster on mainframe computers than on
PC’s, we have not increased the scope or complexity of the calculations.
Results, therefore, are still produced in “real time”, and the codes remain
suitable for interactive use.

Another development since the BASIC edition is the publication of an
excellent new text on numerical analysis ( Numerical Recipes [Pr86]) which
provides detailed discussions and code for state-of-the-art algorithms. We
highly recommend it as a companion to this text. ’

The FORTRAN versions of the code were written with the help of
T. Berke (who designed the menu), G. Buzzell, and J. Farley. We have
also profited from the suggestions of many colleagnes who have generously
tested the new codes or pointed out errors in the BASIC edition. We
gratefully acknowledge a grant from the University of New Hampshire
DISCovery Computer Aided Instruction Program which provided the
initial impetus for the translation. Lastly, our thanks go to E. Wood
for typesetting the text in TEX.

Steven E. Koonin Dawn C. Meredith
Pasadena, CA Durham, NH
August, 1989
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How to Use This Book

This book is organized into chapters, each containing a text section,
an example, and a project. Each text section is a brief discussion of
one or several related numerical techniques, often illustrated with simple
mathematical examples. Throughout the text are a number of exercises,
in which the student’s understanding of the material is solidified or ex-
tended by an analytical derivation or through the writing and running of
a simple program. These exercises are indicated by the symbol m.

Also located throughout the text are tables of numerical errors. Note
that the values listed in these tables were taken from runs using BASIC
code on an IBM-PC. When the machine precision dominates the error,
your values obtained with FORTRAN code may differ.

The example and project in each chapter are applications of the nu-
merical techniques to particular physical problems. Each includes a brief
exposition of the physics, followed by a discussion of how the numerical
techniques are to be applied. The examples and projects differ only in
that the student is expected to use (and perhaps modify) the program
that is given for the former in Appendix B, while the book provides guid-
ance in writing programs to treat the latter through a series of steps, also
indicated by the symbol m. However, programs for the projects have also
been included in Appendix C; these can serve as models for the student’s
own program or as a means of investigating the physics without having to
write a major program “from scratch”. A number of suggested studies ac-
company each example and project; these guide the student in exploiting
the programs and understanding the physical principles and numerical
techniques involved.

The programs for both the examples and projects are available on
IBM-PC and MACINTOSH formatted diskettes. (An order form is lo-
cated in the back of the book.) The codes are suitable for running on any
computer that has a FORTRAN-77 standard compiler. Detailed instruc-
tions for revising and running the codes are given in Appendix A.

A “laboratory” format has proved to be one effective mode of pre-
senting this material in a university setting. Students are quite able to
work through the text on their own, with the instructor being available
for consultation and to monitor progress through brief personal interviews
on each chapter. Three chapters in ten weeks (60 hours) of instruction

zi
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How to Use This Book

has proved to be a reasonable pace, with students typically writing two
of the projects during this time, and using the “canned” codes to work
through the physics of the remaining project and the examples. The
eight chapters in this book should therefore be more than sufficient for
a one-semester course. Alternatively, this book can be used to provide
supplementary material for the usual courses in classical, quantum, and
statistical mechanics. Many of the examples and projects are vivid illus-
trations of basic concepts in these subjects and are therefore suitable for
classroom demonstrations or independent study.
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The problem with computers is that they only give answers
—attributed to P. Picasso



Chapter 1

Basic
Mathematical
Operations

Three numerical operations— differentiation, quadrature, and the
finding of roots — are central to most computer modeling of physical sys-
tems. Suppose that we have the ability to calculate the value of a function,
f(z), at any value of the independent variable z. In differentiation, we
seek one of the derivatives of f at a given value of z. Quadrature, roughly
the inverse of differentiation, requires us to calculate the definite integral
of f between two specified limits (we reserve the term “integration” for the
process of solving ordinary differential equations, as discussed in Chap-
ter 2), while in root finding we seek the values of z (there may be several)
at which: f vanishes.:

If f is known analytically, it is almost always possible, with enough
fortitude, to derive explicit formulas for the derivatives of f, and it is
often possible to do so for its definite integral as well. However, it is often
the case that an analytical method cannot be used, even though we can
evaluate f(z)} itself. This might be either because some very complicated
.mumerical procedure is required to evaluate f and we have no suitable
analytical formula upon which to apply the rules of differentiation and
quadrature, or, even worse, because the way we can generate f provides
us with its values at only a set of discrete abscissae. In these situations, we
must employ approximate formulas expressing the derivatives and integral
in terms of the values of f we can compute. Moreover, the roots of all
but the simplest functions cannot be found analytically, and numerical
methods are therefore essential.

This chapter deals with the computer realization of these three ba-
sic operations. The central technique is to approximate f by a simple
function (such as first- or second-degree polynomial) upon which these
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1. Basic Mathematical Opemtibm
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Figure 1.1 Values of f on an equally-spaced lattice. Dashed lines
show the linear interpolation. -
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operations can be performed easily. We will derive only the simplest and
most commonly used formulas; fuller treatments can be found in many

textbooks on numerical analysis.

1.1 Numerical differentiation

Let us suppose that we are interested in the derivative at z = 0, f'(0).
(The formulas we will derive can be generalized simply.to arbitrary = by
translation.) Let us also suppose that we know f on an equally-spaced
lattice of z values,

fo=f(zn); zZn=nh(n=0, £1, £2,...),

and that our goal is to compute an approximate value of f’(0) in terms
of the f, (see Figure 1.1).

We begin by using a Taylor series to expand f in the neighborhood
ofz=0:

“ 2 3
f(z)=fo+:cf’+%f"+%f’"+..., @)

where all derivatives are evaluated at z = 0. It is then simple to verify
that

kY, R )
far=flz=%h)=fohf + 5[ £ ["+OR), (120)

3
T fer=f(z = +2h) = fot 2hf" + 2R f" & %f’" + O(hY), (1.2b)



1.1 Numerical differentiation

where O(h*) means terms of order A* or higher. To estimate the size
of such terms, we can assume that f and its derivatives are all of the
same order of magnitude, as is the case for many functions of physical
relevance. »

Upon subtracting f_; from f; as given by (1.2a), we find, after a
slight rearrangement,

! fl f s h2 " 4 l
. = “h "6 "+ OR*). (1.3a)
The term involving f"' vanishes as h becomes small and is the dominant
error associated with the finite difference approximation that retains oly
the first term: f il
1~ -
'~ - | (1.3b)

This “3-point” formula would be exact if f were a second-degree polyno-
mial in the 3-point interval [—h,+h], because the third- and all higher-
order derivatives would then vanish. Hence, the essence of Eq. (1.3b) is
the assumption that a quadratic polynomial interpolation of f through
the three points x = xh, 0 is valid.

Equation (1.3b) is a very natural result, reminiscent of the formulas
used to define the derivative in elementary calculus. The error term (of .
order h?) can, in principle, be made as small as is desired by using smaller
and smaller values of h. Note also that the symmetric difference about
z = 0'is used, as it is more accurate (by one order in &) than the forward
or backward difference formulas:

falizth f° Lotoyomy, (1.4a)
f %-_ +O(h). (1.4b)

These “2-point” formulas are based on the assumption that f is well
approximated by a linear function over the intervals between z = 0 and
&= =N,

As a concrete example, consider evaluating f'(z = 1) when f(z) =
sin . The exact answer is, of course, cos 1 = 0.540302. The following
FORTRAN programn evaluates Eq. (1.3b) in this case for the value of A
input:

C chapila.for
X=1.
EXACT=COS(X)
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‘1. Basic Mathematical Operations

10 PRINT *, ’ENTER VALUE OF B (.LE. 0 TO STOP)’
READ », K
IF (H .LE. 0) STOP
FPRIME=(SIN(X+H)-SIN(X-H))/(2+H)
DIFF=EXACT-FPRIME
PRINT 20,H,DIFF ,
20 FORMAT (’ H=',E15.8,5X, ’ERROR=’,E15.8)
GOTO 10
END ?

(If you are a beginner in FORTRAN, note the way the value of H is
requested from the keyboard, the fact that the code will stop if a non-
positive value of H is entered, the natural way in which variable names
are chosen and the mathematical formula (1.3b) is transcribed using the
SIN function in the sixth line, the way in which the number of significant
digits is specified when the result is to be output to the screen in line 20,
and the jump in program c®ntrol at the end of the program.)

Results generated with this program, as well as with similar ones
evaluating the forward and backward difference formulas Eqgs. (1.4a,b),
are shown in Table 1.1. (All of the tables of errors presented in the
text were generated from BASIC programs; the numbers may vary from
those obtained from FORTRAN code, especially when numerical roundoff
dominates.) Note that the result improves as we decrease A, but only up
to a point, after which it becomes worse. "This is because arithmetic in the
computer is performed, with only a limited precision (5-6 decimal digits
for a single precision BASIC variable), so that when the difference in the
numerator of the approximations is formed, it is subject to large “round-
off” errors if h is small and f; and f_; differ very little. For example, if
h = 107%, then

f1 =sin(1.000001) = 0.841472 ; f_; = sin(0.999999) = 0.841470 ,

so that f;— f_1 = 0.000002 to six significant digits. When substituted
into (1.3b) we find f' ~ 1.000000, a very poor result. However, if we do
the arithmetic with 10 significant digits, then

f1 = 0.8414715251 ; f_; = 0.8414704445 ,

which gives a respectable f’ =~ 0.540300 in Eq. (1.3b). In this sense, nu-
merical differentiation is an intrinsically unstable process (no well-defined
limit as h — 0), and so must be carried out with caution.



