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Harmonic Measure

Geometric and Analytic Points of View



S’o avessi le rime e aspre e chiocce,
Come si converrebbe al tristo buco,
Sopra ’l quale pontan tutte ’altre rocce,
Io premerei di mio concetto il suco,

Piu pienamente, ma perch’io non l’abbo,
Non senza tema a dicer mi conduco,
Che’ non e’ impresa da pigliare a gabbo,
Descriver fondo a tutto l'universo,...

Dante, Inferno, Canto 32.



Introduction

This book is based on a series of five lectures that Carlos Kenig gave during the
25th Arkansas Spring Lectures Series in March 2000, at the University of Arkansas.

In these lectures, Kenig described his joint work with Tatiana Toro concerning
end-point analogues of the well-known potential theoretic result of Kellogg, which
says that the density & of the harmonic measure of a C*® domain, has logarithm in
C%; and of the ‘converse’ of this result, the free boundary regularity theorem of Alt-
Caffarelli [2], which says that under (necessary) mild hypothesis, if log k is C*, then
the domain must be of class C*. The potential theoretic results are extensions of
the classical function theoretic work of Lavrentiev [53] and Pommerenke [61], and
the higher dimensional results of Dahlberg [16] and Jerison-Kenig [34].

The free boundary results, on the one hand, give a geometric measure theoretic
characterization of the support sets of measures which are “asymptotically optimally
doubling” in terms of “flatness” conditions on the support, and extend the Alt-
Caffarelli higher dimensional version [2] of the “converse” result of Pommerenke’s
[61], to the end-point VMO case. This type of end-point version of the Alt-Caffarelli
result was first introduced by David Jerison [32].

The book follows closely the format of the lectures. In particular, for each of
the main Theorems in Chapter 6 and in the first section of Chapter 7, we present
a short “sketch of the proof” which is an almost verbatim copy of the argument
described in the lectures. These brief sketches are followed by detailed proofs. In
this way we hope to communicate the main ideas and convey the enthusiasm and
the intuitive insight which made the lectures so lively and exciting.

We break this pattern in the proof of the last two theorems (Sections two and
three in Chapter 7), for which the sketch of the proof alone is already quite long
and technically involved. The interested reader will find details for these theorems
in [45] and [46]. We hope that our presentation will provide a “reading key” to
help navigate through these papers.

In order to make the presentation more self-contained and comprehensive, a
review of the classical results for planar domains has been added in Chapter 2,
where conformal mapping is the main tool to approach the problems.

ix
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CHAPTER 1

Motivation and statement of the main results

This chapter can be read separately from the rest of the book; it is intended
to give a quick overview of the results presented in the next chapters, and to place
them within the current state of knowledge in potential theory and boundary value
problems.

As motivation for the the topics to be discussed in these notes, let us consider
the solution to the classical Dirichlet Problem for a connected, open set 2 C R™,
i.e. the unique, smooth function u € C*°(Q), satisfying

(1.1) ulaQ = f (S Cb(BQ).

{Au =0in Q

Here C,(092) denotes the space of continuous, bounded functions defined on
09Q. The boundary 0N is called regular if in addition u € Cp(f2) and achieves
the boundary data continuously. The maximum principle yields, via the Riesz
representation theorem, the representation formula

(1.2) u(zy) = /BQ f(@Q)dw®™ (Q), for every z, € (2,

where the family of probability, positive measures {dw®*} is the harmonic measure
corresponding to the Dirichlet problem in Q. For the precise definition of {dw®*}
see [42, Definition 1.2.6]. When there is no risk of ambiguity, we fix ., € Q and
denote dw = dw®*. Roughly speaking, the smoothness of the domain determines the
smoothness of solutions to the Dirichlet problem. If the domain 2 is “sufficiently
regular” (see for instance Theorem 1.14, Theorem 6.11, [16] or [18]) then harmonic
measure and surface measure do are mutually absolutely continuous. In this case
we denote the Poisson kernel for the domain Q by

T«

Kom) =g

For instance, if Q is a smooth domain then
oG
(1.3) dw™(Q) = 5=—(Q,2.)do(Q),
nQ

where G denotes the Green function for 2, 7ig is the outer normal at Q € 02 and
do is the surface measure on 9. For more details see e.g. [30, Sec. 2.4]. Let Q be

1



2 1. MOTIVATION AND STATEMENT OF THE MAIN RESULTS

an unbounded domain. If a function v € C*°(2) satisfies

Av=01in Q
(1.4) v>0in Q,
v|aq =0,

then we call it minimal positive harmonic function in ). We denote by dw® the
harmonic measure with pole at infinity,

o Ov
dw™ = B7ig (Q)do(Q).

Here the function v plays the same role as the Poisson kernel for a bounded
domain. As an example, if @ = R7t = {(z,t) € R™™! | ¢t > 0}, then v(z,t) = t and
dw™® = dz on R". As we show below, the classes of domains that are studied in this
book are so general that the classical surface measure may not be well defined. In
that case we substitute do with the restriction to 92 of the n-dimensional Hausdorff
measure in R?*1,

Two basic (and related) questions we intend to address are:

Question 1. What is the relationship between the regularity of the domain and the
doubling character of its harmonic measure?

Question 2. What is the relationship between the regularity of the domain and the
smoothness of its Poisson kernel?

In particular, the results we are going to describe originated from trying to
understand in the asymptotic limit as @ — 0, the following well-known results:

THEOREM 1.1 (Kellogg [40]). If Q@ C R" is of class C»*, 0 < a < 1, then
dw = kdo, and logk € C?,

and its converse,

THEOREM 1.2 (Alt and Caffarelli [2]). If Q C R" satisfies certain (necessary)
“weak conditions” (to be specified later) and logk € C®, then Q is of class C12.

1. Characterization (1),: Approximation with planes

The first step in answering Questions 1 and 2 consists in finding the correct
formulation of the results above, as @ — 0. To do this, we need to recall two
real-variable characterizations of the Holder classes C* and C'%2:

Let 0 < a < 1 and ¢ be real-valued. We say that ¢ € C1*(R") if and only if
there exists C' > 0 such that for any r > 0 and g € R" there is an affine function
L, .z, on R™ satisfying

|¢(x) — Lr,zy (2)]

r

(1.5) < Cre, for |z —xo| <.

At o = 0, we have (1)p, which has the equivalent formulation (Zygmund’s A,
class)

|¢(z + k) + ¢(z — h) — 2¢(z)]|

(1.6) =

<C, for every = € Q.



3. MULTIPLICATIVE VS. ADDITIVE FORMULATION 3

The Weierstrass nowhere differentiable function

>, sin(w2*z)
>
k=0

is a typical element of the Zygmund class A.. Note that if ¢ is differentiable at
the point z, then the left hand side of (1.6) vanishes as |h| — 0. This leads to the
so-called Zygmund \. class.

DEFINITION 1.3. A real valued function ¢ € A, is in A if

. |o(x +h) + d(x — h) — 24(2)|
(17) i 7] =

0

uniformly in x.

Functions in this class may be quite irregular, for instance

2. cos(2Fx)

W=D R

k=1

is in A, and is almost everywhere not differentiable (see [78, pg. 47]).

2. Characterization (2),: Introducing BMO and VMO

We want to characterize C1'* domains. To this end we say that Q is C1® if
and only if its outward unit normal 7 is in C®. It is known that a vector valued
function h : R — R" is in C*(R) if and only if

(1 8) | [
. sup ——
r>0, |I=r T ||

/ |h — hyldz < C,
I

where I denote intervals, |I| their length, and h; denotes the average of h on I
(see [29] and references therein). If we let & = 0 in the above condition, we obtain
the space of functions of bounded mean oscillation (BMO) of John and Nirenberg
[38]. However such definition may not be used to measure the regularity of the
unit normal since |7i| = 1. Hence we introduce the so-called VMO (Vanishing
Mean Oscillation) class, where h € VMO if and only if h € BMO and

1
li — | |h—hyldz = 0.
r—0y [T1=r |1 /, Ih = haldz

The class VMO plays the same role vis a vis BM O that continuous functions
play with respect to the L*° space.

3. Multiplicative vs. additive formulation: Introducing the doubling
condition

Conditions (1)4, and (2), are in a certain sense “additive”. We will also need
corresponding “multiplicative conditions” (fitted to Borel measures), see for in-
stance [42, Pg. 77]. For example: If ¢ : R — R, and ¢’ exists, then (1.6) and (1.3)
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can be formulated in the following way

(1.9) ¢ € A, if and only if

1 / / 1 4
== f et P l <C,
IITI - lIll I

1 / 1 ,
— [ -] 0
'I‘l'l J IIll I

where I, = [z,z+h], and I} = [x—h, z]. In order to state the corresponding “multi-
plicative conditions” we define positive Borel measures dw = e? dz and assume for
a moment that, with respect to the weight ¢’, the operations of exponentiation and
averaging can be commuted, that is f, exp ¢’ ~ exp/f, ¢ (heref, denotes average
over I and =~ denotes a two-sided bound with multiplicative constants). This is
obviously not true in general, but for instance it holds if exp ¢’ € A (dz) (see [25]
for more details). Given this assumption, then (1.9), and (1.10) can be rephrased
as follows:

(1.10) ¢ € A\, if and only if < o(1),

w(I,
(1)

N

(1.11) (A4 class)  For any z in R, one has <C,

E

w(Zy)
w(I) <1+4o0(1), as |h| — 0.
Conditions (1.11) and (1.12) give a rough notion of “regularity” for the measure
dw. In fact, (1.11) is equivalent to dw being a doubling measure (see below for the
precise definition), while (1.12) is in some sense an optimal doubling condition.
However, the reader should keep in mind that in general such measures could be
purely singular with respect to the Lebesgue measure dz on R, see [5] and [9].
The “multiplicative” analogue, in terms of w, of condition (2)¢ is given by dw =
kdz and logk € VMO (see M. Korey [49] and [50]).

(1.12) (A« class)  For any z in R, one has

4. Characterization (1), and flatness

Next, we introduce a geometric version of (1)g, namely the notion of “Locally
flat domains”. This will allow us to state some geometric measure theory results
which have (1) as a point of departure.

We begin by recalling the definition of Hausdorff distance D between two sub-
sets A, B of R"*! (see also [24]): We say that D[A, B] < § if and only if A is in a
d—neighborhood of B and B is in a §—neighborhood of A4, i.e.

(1.13) DA, B] = max (sup{d(a, B)la € A};sup{d(A4,b)|b e B})
DEFINITION 1.4. We say that Q C R™"*! is §— Reifenberg flat if and only if for
every compact set K C R""1| there exists R > 0 such that if Q € K N 0N and

0 < 7 < Rk, then there ezists an n—dimensional plane L(r,Q) containing Q and
such that

(1.14) %D[ B(r,Q)n o ; B(r,Q)NL(r,Q)] <.
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Q B(r,Q)

= L(nQ)

26 ~ 90

FIGURE 1. Reifenberg flat domain.

Note that this definition is significant only for § small. We will always assume
6 < % and motivate this choice later. Set

. 1 )
(1.15) 0(r,Q) = QelLrg,Q) {;D[ B(r,Q)noQ ; B(r,Q)N L(r,Q) ]}

and

(1.16) Ok(r)= sup 6(r,Q).
QENNK

We say that  is vanishing Reifenberg, if it is 6—Reifenberg flat (6 < 1/8), and
moreover, for every compact set X C R**! we have
(1.17) limsup g (r) = 0.

r—0

In a certain sense, such domains are “locally flat”. To simplify the notation,
when there is no ambiguity we will denote L(r, Q) by Lg.

To help clarify the definitions of Reifenberg flat and vanishing Reifenberg do-
mains we present a few examples.

We begin with the two most basic examples, namely the disc and the wedge,
that will emphasize the relevance of the vanishing condition (1.17). Such examples
serve as the prototype of the classes of smooth and Lipschitz domains respectively
(see Definition 3.15).

Ezample 4.1. For the wedge centered at a point w and with angle 0 < ¥ < ,
we let 3 = (m—1))/2, see figure 2. Elementary computations yield inf 1, ) 6(r, w) =
rsin 8. This shows that as the wedge opens up, converging to a line, the domain
becomes vanishing Reifenberg. On the other hand, the ratio 6(r, w)/r cannot be
made smaller by decreasing the scale r.

Ezxample 4.2. In the case of the disc of radius R > 0 we let w denote a
boundary point, see figure 3. Choosing L(r,w) to be the tangent we derive the

formula )
O(r,w) = max{ r vV R2 + r? —R},

2R?’
from which it immediately follows that the disc is vanishing Reifenberg.
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Q2
Loy

FIGURE 2. The wedge: infy ;. ., 0(r,w) = rsin 3.

&

F1GURE 3. The disc: §(r,w) = max 2’"2 VR2 12 — } .

Ezample 4.3. Every domain Q above the graph of a function ¢ € A, is van-
ishing Reifenberg (see the proof of Corollary 6.16). This, in particular, shows
that vanishing Reifenberg domains need not be Lipschitz regular. Recall that

$x) = Yoy C—ozskm%, is in the A, Zygmund class (see [78, pg. 47]), but it is
almost nowhere differentiable. Hence, vanishing Reifenberg flat domains may be

even less regular than Lipschitz, and may not have a classical “surface measure”.

Example 4.4. In general, vanishing Reifenberg domains do not have tangent
planes anywhere on their boundary (as we have already seen), and may not even
be local graphs. For instance, in dimension n = 1 we may consider the snowflake
curve (see [20]), with angles tending to zero sufficiently slowly. This provides an
example of a Reifenberg flat set with vanishing constant which has locally infinite
H! Hausdorff measure. More precisely, let us recall an argument from [75]:

Define the set Ss to be the self-similar snowflake which is obtained by applying
iteratively a set of contractions and rotations to a generating curve which, in our
case, is the wedge in Example 4.1, with angle 0 < ¥ < 7. Set § = (7w — ¢)/2.
This is the same iterative process that leads to the classical Koch curve S;/3. In



