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PREFACE

S. A. LEVIN
Department of Ecology and Evolutionary Biology, Princeton University, Princeton,
NJ 08544-1003, USA

The Twentieth Century has seen the dawning of mathematical biology, and
witnessed its maturation. It has been an international enterprise, emerging
from the work of the great mathematician Volterra in Italy; from Lotka in the
United States and Kostitzyn in the Soviet Union; and from a succession of
monumental contributions in population genetics from Fisher and Haldane in
the United Kingdom, Wright in the Unites States, and Kimura in Japan. The
development was so rapid and wide that it would be impossible to do justice
to the scope and extent of the multiple lines that developed, but it is unlikely
that any nation has been left untouched. China, in particular, has seen a rapid
development of the subject through the contributions of numerous scholars,
many represented in this volume, in recognition of the fact that many of the
problems that mathematics can best help to address-population growth and
its environmental consequences, pollution and the loss of healthy ecosystems,
the spread of infectious diseases and the need for assuring a sustainable future-
have a particular relevance to that great nation. It is noteworthy and timely
that an international congress on mathematical biology be held in China, in
conjunction with the publication of the first issue of a new Chinese journal
on the subject (Bulletin of Biomathematics), attesting to the entry of China
as a major international center for research in mathematical biology. Similar
conferences have been held recently in Europe, Japan, India, Israel, Africa and
the Americas, showing the international growth of the subject.

The diversification of mathematical biology in terms of its participants
has been matched by a diversification and maturation of the subject mat-
ter. Research in mathematical biology, restricted in its early states to a few
areas of biology, has advancéd at the same blinding speed as has biological
and medical research. Fundamental contributions are being made not only
in population biology, but also in neurobiology, immunology, epidemiology,
physiology, development, protein folding and sequence analysis, among other
areas. The mathematical methods used include sophisticated statistical anal-
yses, deterministic and stochastic dynamical models, topological methods and
high speed computation, among others. Most notably, even as the biological
and mathematical methods have grown in sophistication, the connections be-
tween mathematics and biology have become stronger, and the participants
on all sides have broadened their understanding of the complementary fields.



The result has been that mathematical biologists spend less time than they
once did in meetings such as that which gave rise to this volume, and more
at meetings that address their specific disciplinary interests. In this, they are
indistinguishable from their more biological colleagues, a positive sign of the
degree to which mathematical methods and mathematicians themselves have
become integrated into biological research. This is, in all regards, an impressive
development.

Yet meetings like the one that stimulated this volume serve an essential
role. They allow scientists in different disciplines to educate one another about
problems in other areas of biology, and they help in the cross-fertilization that
comes from the exploration of common themes, such as pattern formation, self-
organization and collective dynamics, not to mention the now standard bodies
of research in statistics and dynamical systems theory. Thus, on behalf of all
of the participants, I thank the Chinese organizers who made this meeting
possible, and hope that it will be the beginning of a tradition.

Simon Levin
Co-Chair
June 10, 1997
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BURSTING OSCILLATIONS IN AN IDEALIZED MODEL FOR
AN ACTIVITY-DEPENDENT SPINE

S. M. BAER and K. R. ZAREMBA
Department of Mathematics, Arizona State University

Tempe, AZ 85287-1804, USA

Dendritic spines are the major target for excitatory synaptic inputs in the ver-
tebrate brain. In recent years they have become the focus of many biochemical,
biophysical, and modeling studies, and are considered to be important loci for
plastic changes underlying memory and learning processes. We formulate and an-
alyze an ordinary differential equation model for an activity-dependent spine with
active membrane channels in the head. In the model the spine stem conductance
depends (slowly) on the local electrical interactions between the spine head and
the dendritic cable; parameter regimes are found for bursting, steady-states, con-
tinuous spiking, and more complex oscillatory behavior. We show that solutions
to this system approximate the dynamics of a full (partial differential equation)
cable description of the model when the spine head membrane potential exhibits
relaxation oscillations.

1 Introduction

Dendritic spines, which are small evaginations of the dendritic surface of several
functionally important classes of nerve cells, are a major target for excitatory
synaptic inputs in the vertebrate brain. Recent studies estimate that over
90% of central nervous system synapses occur on spines and that they are
considered to be an important locus for plastic changes underlying memory
and learning processes (see the excellent review articles by Harris and Kater!,
and Shepherd ?).

Spines have a general knoblike appearance of a bulbous head and a tenuous
stem. Typical dimensions include stem lengths of order 1.0pum with diameters
of order 0.1um and head surface areas of order 1.0um?. Spines have differ-
ent sizes, shapes and configurations. The stems can be long or short, fat
or thin, branched or unbranched. The heads can be small or large but are
usually globular in shape. There can be two-headed spines and a spine head
can have multiple transmission zones. Evidence that synaptic morphology
may be activity-dependent 3 and that spine head membrane may be endowed
with voltage-dependent (excitable) channels* is the motivation for this present
study.

Recently, Wu and Baer ® formulated a cable equation with a single spine
boundary condition located at X = 0 and a sealed end boundary condition at
X = L, to explore the threshold and dynamical properties of an excitable spine



Figure 1: A schematic of a dendritic spine attached to a passive cable.

when a synaptic input (Isy) and a dendritic input at the spine base (Ip) are
modeled as steady current sources (see Fig. 1). They examined the possibility
that the spine stem resistance (R,,) is activity-dependent. Their idealized
hypothesis was that a spine with passive membrane bombarded by synaptic
activity tends to strengthen its electrical connection to the dendrite over time,
but if this activity decreases to the extent that the dendritic current source
dominates, then a passive spine tends to become more isolated (electrically)
over time. To explore this hypothesis they assumed that the time rate of
change of the spine stem conductance (G,; = 1/R,;) is proportional to the
current through the stem (I,,); i.e., dG,s/dt = €ls5, where e < 1. Activity
that drives I;; from the spine head to the dendrite (I, > 0) slowly increases
Gy, and dendritic input that drives the current from the dendrite to the head
(Iss < 0) slowly decreases G;5s. When excitable channels were then added to
the membrane properties of the spine head, the cable model generated different
patterns of electrical activity. This activity ranged from continuous spiking to
irregular and regular bursting oscillations to constant steady-states; and the
electrical length of the dendrite controlled transitions between these modes of
electrical activity (see Fig. 3a).

Wu and Baer proposed a simplified model to replace the cable equation
when the spine head membrane exhibits relaxation oscillations. In this paper
we give a heuristic formulation of this simple model, investigate its dynamical
properties analytically and numerically, and show that its solutions approxi-
mate the dynamics of the full cable description. In Section 2 we formulate the
model. In Section 3 we investigate analytically the static spine case; i.e., when
Gys is fixed. Finally, in Section 4, we investigate the dynamics of the model
when the spine is activity-dependent.



2 A simplified model for an activity-dependent spine

In this section we give a heuristic derivation of a simple model for an activity-
dependent spine with relaxation oscillator kinetics. The derivation is based on
observations we made integrating the full system [Eqgs. (10)-(15) in the paper
by Wu and Baer], which consists of a single dendritic spine with FitzHugh-
Nagumo (FHN) kinetics attached, at X = 0, to a dendritic cable of electrotonic
length L. As described in the last section, the cable is sealed at X = L;
a constant synaptic current input Isy is applied at the spine head; and a
constant dendritic input Ip is applied at the spine base. The FHN system
exhibits relaxation oscillations for b <« 1.

We observed that when the spine head potential u(t) is a relaxation oscil-
lator, the oscillations penetrate far into the cable with little phase lag and for
most of the cycle the dendritic potential tracks the steady-state manifold

cosh (L — X)
coshl ' (1)

where v, is the membrane potential at the spine base, which depends on u(t).
The form of Eq. (1) is easily derived by solving the steady-state passive cable
equation, treating v, as a constant command potential applied at X = 0 and
imposing a sealed end boundary condition at X = L.

We can derive the functional form for v,(u) directly from the equations
(see Wu and Baer), but instead we deduce it from conservation of current at
the spine base. First note that the input resistance (see Rall ®) at the spine
base (for the above boundary conditions) is

v(X,t) = v, (u(t)

Rsp = Ry cothL (2)

where the resistance Roo = (2/7)(RmRi)/*(d)=%/?> depends on the cable’s
membrane resistivity R, cytoplasmic resistivity R;, and diameter d. We next
observe that the current at the spine base v,(u)/Rsp has two components:
(1) the fraction of head membrane current flowing through the stem and (2) the
fraction of dendritic input current that contributes to flow down the dendrite;
ie.,

v, (u) R, u

e = G () + ) In, ®)
where Gsp = 1/Rsp is the input conductance at the spine base. Multiplying
Eq. (3) by Rsp, and expressing Rsp and Gsp in terms of R, and L, v, can
be recast into the following more concise form:

Gy u+ Ip
Ry, G,s + tanhL) ) )

v,(u) = Reo (



The potential in the head u(t) remains to be determined. Again, from
conservation of current, the capacitive current in the spine head must balance
with the ionic current, the spine stem current I,,, and the synaptic current
Isy. Since we are assuming that the ionic current is governed by FHN kinetics,
the simplified model for an activity-dependent spine is

d
% = —f@-w-L, + Isu (5)
%1:1 = b(u —yw) b1 (6)
dG.s
T = €& Ias [ b’ (7)
where f(u) is a cubic-shaped function given by
1
flu)=u(u-1)(u—a) 0<a<§, (8)

and I, is the stem current defined by
I,s = Gy [u — v,(u)]. 9

Equation (5) reflects the current balance relation in the head, and from
Eq. (9), if I;; > 0 current passes from the head to the dendrite and if I,, < 0
current passes from dendrite to head. The parameters b and ~y are positive con-
stants and w(t) represents a recovery current which, according to (6), responds
slowly, when b is small, to changes in u.

The activity-dependent stem conductance is modeled by Eq. (7). This
slow equation provides bi-direction coupling to the fast subsystem through
I,,. Note that activity that drives I,, from the spine head to the dendrite
(Iss > 0) slowly increases G,,, and dendritic input that drives the current
from the dendrite to the head (I, < 0) slowly decreases G,,. Our simplified
model is related to the FitzHugh-Rinzel model (FHR) formulated in 1976 by
FitzHugh and Rinzel (unpublished) and later analyzed by Rinzel”.

3 The static spine

It is instructive to first analyze the reduced case when G, is fixed in Egs. (5)-
(7). When the spine stem conductance is fixed, e =0 in Eq. (7), the system
reduces to a modified FHN equation of the form
du
dt
dw
dt

= —f(u)—w— Gy [u — vs(u)] + Isy (10)

= b(u —yw) b1, (11)



where G, is constant.

Multiple steady-states are possible but a condition guaranteeing that there
is exactly one is

1 1

- > 3 (1-a+a?) -

G,stanh L
Ry, G,, + tanhL’

This condition is identical to the one derived by Wu and Baer for the full cable
model.

The steady-state solution to Eqs. (10)-(11) is

(12)

wy, = us/v, Isu = f(us) + us/y + Gaslus — vs(u,)] (13)

To analyze stability, we consider small perturbations of the form u = u, +
pett and w = w, + ge#* where |p| € 1 and |q| < 1. This leads to the
following characteristic equation for p

w4+ Ap+B=0 (14)
where
' G,stanh L
A = fulls) +br+ g (15)
B = b(1-Mh?)+ Aby. (16)

The steady-state is stable (unstable) if A >0, B> 0 (A <0 and/or B <0).
From the conditions A =0 and B > 0 we find two Hopf points, Isy =
IS*H. They satisfy

uf:%(a+1ﬂ:\/az—a+1-—3b’y—

3 G,ytanh L ) (17)

Ry, G, + tanhlL

where IS*H are found by back-substituting (17) into the second equation in
(13). The frequency at the Hopf point,

w = VBT =b7, (18)

is independent of L and G,,. It is important to note that in the full cable
model the frequency at the Hopf point does depend on L and G,,, however
our numerical simulations indicate that variations in the frequency are less
than 5% relative error when compared to the above expression.

Figure 2 is a two-parameter (Isy vs. G,,) bifurcation diagram of Hopf
points for Ip = 0 and five values of L. The stability boundaries are generated
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Figure 2: Stability boundaries for five electrotonic lengths.

analytically from (17) and (13) using supercritical FHN parameter values a =
0.2, b = 0.05, v = 0.4, and cable parameter R, = 1. For comparison, the
dashed curves shown are the stability boundaries computed from the full cable
model. For L > 0.26, the upper and lower curves of the stability boundaries
coalesce at a limit point. If we denote the critical value at a limit point as
G5, then for each value of G;3 < G%, there are two Hopf points, I;H and
Igy . Within the interval Ig, < Isy < I, solutions to system (10)-
(11) are periodic, outside the interval there are stable steady-state solutions.
For Gs; > G%,, only steady-state solutions exist; the voltage sensitive ion
channels in the spine head are exposed to too much conductive loading.

Decreasing the length of the cable decreases the conductance loading, and
therefore the limit point G7, increases. However, there exists a critical length,
L., below which oscillations exist for all values of G4, (In Fig. 2, L., = 0.260).
The biological explanation is simple if one imagines a short cable with an in-
finite stem conductance (G;; — o0). The large stem conductance effectively
merges (electrically) the spine head membrane into the dendritic membrane,
but since the dendrite is short there is not enough dendritic membrane to over-
load the excitability of the spine head membrane. We can obtain an analytic
estimate of L. Fixing L small (tanh L ~ L) and letting G, approach infinity
the Hopf points coalesce when the expression under the square root sign in
(17) vanishes, i.e., when L = L., where

LCT:R—;)(az—a+l—3b'y). (19)

Thus, for L < L., oscillations exist for all values of G,, , and for L >
L., there exists a finite stem conductance Gj,; if G,, > G}, oscillations
are precluded. The expression for L., is asymptotically equivalent (as b — 0)
to the one derived for the full cable model [see Eq. (42) in Wu and Baer].
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Figure 3: The pattern of electrical activity in the spine head depends on the electrical length.

4 The dynamics of an activity-dependent spine

In this final section we consider the effect of an activity-dependent stem con-
ductance on the excitability properties of a dendritic spine. We show that the
simplified model not only captures the dynamics of the full cable system but
is also an excellent approximation.

When ¢ < 1 in (7), the stem conductance, G,,, is a slow variable rather
than a fixed parameter. Figure 3b shows that the simplified model [Egs. (3)-
7)] reproduces the patterns of oscillations in the full model (Fig. 3a) and
over, approximately, the same range of electrotonic lengths. The simulations
exhibit steady-state patterns of oscillations after initial transients have decayed
for Isy = 0.04 and Ip = 0.2. The parameters (a = 0.14,b = 0.008,v = 2.54)
are chosen so that Hopf bifurcations to periodic solutions are subcritical and
R = m~!. When the cable is electrically short, the spine head potential
oscillates with periodic spikes (L = 0.3). As the length increases (0.3 < L <
0.4) the periodic spiking becomes intermittent spiking and the continuous spike
pattern disorganizes. Burst solutions dominate as L increases, but for electrical
lengths sufficiently large (e.g., L = 0.8) only steady-state solutions exist.

As in the full cable model, the simplified system exhibits autonomous
bursting. In Fig. 4, the burst solution of Fig. 3b for L = 0.6, is projected
onto the G,,-u plane. Superimposed is the bifurcation diagram of the fast
subsystem (5)-(6) for fixed values of G,,. Note the characteristic decay and
growth of the small oscillations during the silent phase. The point of transition
from decaying to growing oscillations is precisely the Hopf bifurcation point
of the corresponding static problem; i.e., when Re(u(G,,)] = 0, where p is an



