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As we neared the completion of this book, the
population of the earth reached five thousand
million (billion), double that of about 1950. World
agricultural production kept pace with, or slightly
exceeded, this increase, and indeed the current
production of food is sufficient to provide an
adequate nutrition for about six billion people (the
estimated population for the year 2000). In this
sense, agriculturalists have met the demands
imposed on them by the increasing population.
However, it hardly needs to be repeated here that
the available food is unequally distributed, with
surpluses in some regions and severe shortages in
others. Apparently intractable social, political and
economic complexities, at local, national and
international levels, maintain this imbalance. The
long-term solution to the problem of food short-
ages in many developing countries is, therefore,
an increase in the production of food, for local
consumption and sale, on countless small farms.
The problems of agriculture in the developed
world are, of course, very different, although here
again agriculture cannot be considered in isola-
tion, simply as the means of producing food.
Decisions which a farmer makes about what he
grows are influenced, or even dictated, by the
policies of governments attempting to control their
countries’ political and economic machinery.
This is not the place to enlarge upon the prob-
lems of agricultural production throughout the
world. Instead, we offer our belief that the intro-
duction of improved crop plants and growing
systems should play no small part in solving some
of these problems. ‘Improved’ could mean a
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variety of changes specific to particular species and
environments but, in general, we are referring to
plants able to photosynthesize more efficiently in
terms of available solar radiation, water use and
fertilizer input, able to convert a greater propor-
tion of biomass into the desired product, whether
food, fibre, fuel or the precursors of medicinal
drugs, or better able to withstand environmental
stresses. We further believe that such changes will
be brought about as a result of understanding how
the plants function, both individually and as
crops: ‘plant physiology is to agronomy what
human physiology is to medicine’ (van Overbeek
1976). The rapidly developing techniques of
genetic engineering, complementing traditional
plant breeding, provide the means; physiology
must provide the knowledge required to draw up
the specifications.

We have written this book as a text for degree-
level teaching, and have assumed that our readers
have a basic knowledge of plant physiology,
biochemistry and anatomy. We have taken pains
to explain ideas which we know, from our own
teaching experience, students find difficult. Some
of these problems arise because students can be
reluctant to accept that, because our under-
standing of certain topics is incomplete, some
experimental observations have more than one (or
no) ‘explanation’. Other difficulties arise because
processes at the crop level are controlled by many
factors, the relative importance of which can
change with time or with variations in the environ-
ment or management. The ‘correctness’ of
different explanations may therefore change



according to circumstances. And, of course, our
perception of how the crop works must be contin-
ually reviewed as new observations are made.
These complications pose problems also for the
writer, who tries to be objective, but whose inev-
itable (but unwitting) bias in interpretation may
well be shown by subsequent work to have been
misjudged. This is unfortunate, but unavoidable
if the work 1s to draw on the most recent litera-
ture, and will at least serve to reinforce the
reader’s awareness of the multiplicity of influences
on the crop plant. However, any unintentional
bias in interpretation has been superimposed upon
a conscious bias in the selection of topics. Crop
physiology is a vast field, and we have chosen to
deal only with the above-ground processes funda-
mental to crop yield. Even so, in trying to keep
the book to a manageable size, we have perhaps
neglected work which should have been included,
and it would be helpful if any such omissions, as
well as errors or misinterpretations, are brought
to our attention (R K M H, Chapters 2, 6, 7, 8;
A J W, Chapters 3, 4, 5, 9). We are grateful to
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Dr Dale Walters who has collaborated in this
project from the start, contributing several valu-
able sections on the interactions between plant
disease and crop physiology.

Parts of the book have been read in draft form
by Mr E J Allen, Dr L. C Ho, Dr E ] M Kirby,
Dr PEH Minchin, Dr J R Porter, Dr M ]
Robson, Dr ] H M Thornley and Miss ] Woledge,
and we are grateful for their valuable comments.
Professor D A Baker kindly read the entire
manuscript, and to him we are especially indebted.
The exacting task of producing the diagrams in
their final form fell to Jacqueline Gemmell,
Felicity Walker and Euan McCall, and to them we
extend our thanks. Finally, we thank our families
for their forbearance during a long period of
undeserved neglect.
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CHAPTER |

And then a queer thought came to her there in the
drooked fields, that nothing endured at all,
nothing but the land she passed across, tossed and
turned and perpetually changed below the hands
of the crofter folk since the oldest of them had set
the Standing Stones by the loch of Blawearie and
climbed there on their holy days and saw their
terraced crops ride brave in the wind and sun. Sea
and sky and the folk who wrote and fought and
were learned, teaching and saying and praying,
they lasted but as a breath, a mist of fog in the
hills, but the land was forever, it moved and
changed below you, but was forever, you were
close to it and it to you, not at a bleak remove it
held you and hurted you.

(From Sunset Song, Lewis Grassic Gibbon 1932).

INTRODUCTION

This book is an introduction to the physiological
processes determining the yield which can be
harvested from a stand of crop plants, processes
which are common to all crop species, whether
grown for direct consumption by humans (cereals,
seed legumes, potatoes, vegetables), for indirect
consumption via livestock (grass, forage legumes,
oilseeds), or for industrial purposes (production
of fibre, alcohol, fuel). Although crop physiology
is firmly founded upon plant physiology and
biochemistry, it has now emerged as a relatively
distinct subject, for a number of reasons. First,
the range of species studied 1is restricted,
compared with that studied by plant physiologists
and ecologists, with the greatest emphasis, to date,
being placed upon cereals (wheat, rice, maize,
barley). However, this specialization 1s offset by
the unique depth of study of individual species at
all levels from subcellular biochemistry to field-
scale agronomy. Furthermore, crop physiology
involves complementary studies of plants growing
singly and in stands, in the field and under
controlled conditions. Secondly, in the field,
concepts such as leaf area index have led to the
idea of the crop leaf canopy as a single functional
unit, rather than an assemblage of individual
plants. This, in turn, has permitted the develop-
ment of new micrometeorological methods for
measuring mass and energy exchange between
atmosphere and canopy (e.g. canopy net
photosynthesis).

Growing a crop is an exercise in energy trans-
formation, in which incident solar radiation is
converted to more useful forms of chemical poten-
tial energy located in the harvested parts (e.g.
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starch in cereal grains and potato tubers; lipids in
oilseeds). To achieve this transformation, it is
necessary for the crop to carry out the following
three processes in sequence:—

(a) interception of incident solar radiation by the

leaf canopy;

conversion of the intercepted radiant energy

potential energy (the latter
conveniently expressed in terms of plant dry
matter);

(c¢) partitioning of the dry matter produced
between the harvested parts and the rest of
the plant.

(b)

to chemical

The yield (Y) of a crop over a given period of time
can, therefore, be expressed by the equation:

Y=0QXxIXegexH [L.1]

where Q is the total quantity of incident solar
radiation received over the period

I 1s the fraction of Q which 1s 1nter-
cepted by the canopy

€ is the overall photosynthetic efficiency

of the crop (i.e. the efficiency of
radiant to chemical
potential energy), commonly expressed
in terms of the total plant dry matter
produced per
radiant energy

conversion  of

unit of intercepted

H is the fraction of the dry matter
produced which 1s allocated to the
harvested parts. This 1s really the
harvest index of the crop stand,
although it should be emphasized that
it is normally expressed in terms of
above-ground production,
the root system.

excluding

The amount of solar radiation incident upon
unit area of cropland (Q) per day, which depends
upon daylength and the diurnal pattern of irradi-
ance, varies regnlarly with season and latitude,
and irregularly with altitude and short-term
weather factors such as cloudiness. Variation in Q
is an aspect of environmental physics, and since
it 1s admirably covered in a number of other text-
books (e.g. Monteith 1973; Woodward and
Sheehy 1983), it is not studied in depth here.

The extent to which the canopy intercepts the

available radiation (I) depends not only upon the
crop leaf area displayed per unit of soil surface
area (leaf area index) but also upon characteristics
such as leaf angle and the arrangement of the
leaves 1n space (the canopy structure or architec-
ture). The factors controlling leaf growth and
canopy development are reviewed in detail in
Chapter 2. As shown by the pioneering studies of
Watson in the 1940s, variation in [ accounts for
most of the differences in yield between sites and
seasons in temperate regions, because € and H are
relatively constant in the absence of severe stress
(drought, disease). This 1s clearly illustrated by
Fig. 1.1, which shows that the total dry-matter
production of three contrasting crop species, on
a weekly basis, was linearly related to the quantity
of radiant energy intercepted during that week
(compare with Figs 3.3 and 7.16 where the same
effect 1s shown over the entire growing season).
Thus, since canopy development 1s  limited
primarily by temperature, potential vield is lost in
spring simply because the temperatures during the
preceding weeks have been too low for the devel-
opment of leaf area to intercept the available
radiation (e.g. Figs 2.13 and 2.19).

The scientific literature concerned with €, the
photosynthetic efficiency, which is reviewed in
Chapters 3 and 4, 1s much more extensive than
that dealing with leaf and canopy development, in
spite of the fact that € varies much less than [ in
the field. There are at least three reasons for this
concentration of interest upon photosynthesis and
related processes (respiration, photorespiration).
First, the reactions of photosynthesis are intri-
guing in themselves since they are unique to green
plants and are the primary source of energy for
virtually all food chains. Secondly, it is important
to be able to account for the fact that the rates of
component processes of photosynthetic efficiency
vary between species, and are influenced substan-
tially by varation 1in environmental
whereas € varies little between crops and species
(note the linear relationships in Figs 1.1, 3.3, and
7.16). Thirdly, it has become clear that in certain
crops, notably grasses, there is hmited scope for
improvement of yield by variation in I and H, and
that increased production can come only from
Increases in €.

H, the partitioning of dry matter to the
harvested parts, 1s undoubtedly the least under-

factors,



