FIFTH EDITION

Data Structures & Algorlthms i

MICHAEL T. GOODRICH | ROBERTO TAMASSIA

International Student Version

Data Structures and
Algorithms in Java

Fifth Edition
International Student Version

Michael T. Goodrich

Department of Computer Science
University of California, Irvine

Roberto Tamassia
Department of Computer Science

Brow Py = e e =

w R ey f gt b '

John Wiley & Sons, Inc.

This book was set in ISTEX by the authors. Cover image from (©) Joan Kerrigan/Shutterstock.

Trademark Acknowledgments: Java is a trademark of Sun Microsystems, Inc. UNIX® is
a registered trademark in the United States and other countries, licensed through X/Open
Company, Ltd. PowerPoint® is a trademark of Microsoft Corporation. All other product
names mentioned herein are the trademarks of their respective owners.

Copyright (©) 2011, John Wiley & Sons (Asia) Pte Ltd. All rights reserved.

This book is authorized for sale in Europe, Asia, Africa and the Middle East only and
may not be exported outside of these territories. Exportation from or importation of this
book to another region without the Publisher’s authorization is illegal and is a violation
of the Publisher’s rights. The Publisher may take legal action to enforce its rights. The
Publisher may recover damages and costs, including but not limited to lost profits and
attorney’s fees, in the event legal action is required.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-
ted in any form or by any means, electronic, mechanical, photocopying, recording, scan-
ning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States
Copyright Act, without either the prior written permission of the Publisher or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc.,
222 Rosewood Drive, Danvers, MA 01923, website www.copyright.com. Requests to the
Publisher for permission should be addressed to the Permissions Department, John Wiley
& Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008,
website www.wiley.com/go/permissions.

ISBN: 978-0-470-39880-7
Printed in Asia
10987654321

Data Structures and
Algorithms in Java

Fifth Edition
International Student Version

To Karen, Paul, Anna, and Jack
— Michael T. Goodrich

To Isabel
— Roberto Tamassia

Preface

This international student version of Data Structures and Algorithms in Java pro-
vides an introduction to data structures and algorithms, including their design, anal-
ysis, and implementation. In terms of curricula based on the IEEE/ACM 2001
Computing Curriculum, this book is appropriate for use in the courses CS102
(I/O/B versions), CS103 (I/0/B versions), CS111 (A version), and CS112 (A/I/O/F/H
versions). We discuss its use for such courses in more detail later in this preface.

The major changes in the fifth edition are the following:

e We added more examples and discussion of data structure and algorithm
analysis.

e We enhanced consistency with the Java Collections Framework.

e We enhanced the discussion of algorithmic design techniques, like dynamic
programming and the greedy method.

e We added new material on improved Java I/O methods.

e We created this international student version of the book, which contains
content, such as Java internationalization and international units, more ap-
propriate for readers outside of North America and Europe.

e We added a discussion of the difference between array variable-name assign-
ment and array cloning.

e We included an expanded discussion of the Deque interface and LinkedList
class in Java.

e We increased coverage of entry objects in the Java Collection Framework.

e We fully integrated all code fragment APIs to use generic types.

e We added discussions of the NavigatableMap interface, as well as their im-
plementations in the Java Collections Framework using skip lists.

e We included a discussion of the Java TreeMap class.

e We provided discriptions of the sorting methods included in the Java library.

e We expanded and revised exercises, continuing our approach of dividing
them into reinforcement, creativity, and project exercises.

This book is related to the following books:

e M.T. Goodrich, R. Tamassia, and D.M. Mount, Data Structures and Algo-
rithms in C++, John Wiley & Sons, Inc. This book has a similar over-
all structure to the present book, but uses C++ as the underlying language
(with some modest, but necessary pedagogical differences required by this
approach).

e M.T. Goodrich and R. Tamassia, Algorithm Design: Foundations, Analysis,
and Internet Examples, John Wiley & Sons, Inc. This is a textbook for a more
advanced algorithms and data structures course, such as CS210 (T/W/C/S
versions) in the IEEE/ACM 2001 curriculum.

vii

viii Preface

Use as a Textbook

The design and analysis of efficient data structures has long been recognized as
a vital subject in computing, for the study of data structures is part of the core of
every collegiate computer science and computer engineering major program we are
familiar with. Typically, the introductory courses are presented as a two- or three-
course sequence. Elementary data structures are often briefly introduced in the
first programming course or in an introduction to computer science course and this
is followed by a more in-depth introduction to data structures in the courses that
follow after this. Furthermore, this course sequence is typically followed at a later
point in the curriculum by a more in-depth study of data structures and algorithms.
We feel that the central role of data structure design and analysis in the curriculum
is fully justified, given the importance of efficient data structures in most software
systems, including the Web, operating systems, databases, compilers, and scientific
simulation systems.

With the emergence of the object-oriented paradigm as the framework of choice
for building robust and reusable software, we have tried to take a consistent object-
oriented viewpoint throughout this text. One of the main ideas of the object-
oriented approach is that data should be presented as being encapsulated with the
methods that access and modify them. That is, rather than simply viewing data
as a collection of bytes and addresses, we think of data objects as instances of an
abstract data type (ADT), which includes a repertoire of methods for performing
operations on data objects of this type. Likewise, object-oriented solutions are of-
ten organized utilizing common design patterns, which facilitate software reuse
and robustness. Thus, we present each data structure using ADTs and their re-
spective implementations and we introduce important design patterns as means to
organize those implementations into classes, methods, and objects.

For each ADT presented in this book, we provide an associated Java interface.
Also, concrete data structures realizing the ADTs are discussed and we often give
concrete Java classes implementing these interfaces. We also give Java implemen-
tations of fundamental algorithms, such as sorting and graph searching. Moreover,
in addition to providing techniques for using data structures to implement ADTs,
we also give sample applications of data structures, such as in HTML tag matching
and a simple system to maintain a photo album. Due to space limitations, however,
we sometimes show only code fragments of some implementations in this book and
make additional source code available on the companion web site. The Java code
implementing fundamental data structures in this book is organized into a single
Java package, net.datastructures, which forms a coherent library of data structures
and algorithms in Java specifically designed for educational purposes in a way that
is complementary with the Java Collections Framework. The net.datastructures
library is not required, however, to get full use from this book.

ix

Online Resources

This book is accompanied by an extensive accompanying set of online resources,
which can be found at the following web site:

www.wiley.com/go/global /goodrich

Students are encouraged to use this site along with the book, to help with exer-
cises and increase understanding of the subject. Instructors are likewise welcome
to use the site to help plan, organize, and present their course materials. Included
on this Web site is a collection of educational aids that augment the topics of this
book, for both students and instructors. Because of their added value, some of these
online resources are password protected.

For the Student

For all readers, and especially for students, we include the following resources:
All the Java source code presented in this book.

e PDF handouts of Powerpoint slides (four-per-page) provided to instructors.

e A database of hints to all exercises, indexed by problem number.

e An online study guide, which includes solutions to selected exercises.
The hints should be of considerable use to anyone needing a little help getting
started on certain exercises, and the solutions should help anyone wishing to see
completed exercises. Students who have purchased a new copy of this book will
get password access to the hints and other password-protected online resources at
no extra charge. Other readers can purchase password access for a nominal fee.

For the Instructor

For instructors using this book, we include the following additional teaching aids:
e Solutions to over two hundred of the book’s exercises.

A database of additional exercises, suitable for quizzes and exams.

The complete net.datastructures package.

Additional Java source code.

Slides in Powerpoint and PDF (one-per-page) format.

Self-contained special-topic supplements, including discussions on convex

hulls, range trees, and orthogonal segment intersection.

e Ready-to-use, turn-key projects, complete with supporting Java code for graphical-

user interfaces (GUISs), so that students can concentrate on data structure de-
sign, implementation, and usage, rather than GUI programming.
The slides are fully editable, so as to allow an instructor using this book full free-
dom in customizing his or her presentations. All the online resources are provided
at no extra charge to any instructor adopting this book for his or her course.

Preface

A Resource for Teaching Data Structures and Algorithms

This book contains many Java-code and pseudo-code fragments, and hundreds of
exercises, which are divided into roughly 40% reinforcement exercises, 40% cre-
ativity exercises, and 20% programming projects.

This book can be used for the CS2 course, as descirbed in the 1978 ACM Com-
puter Science Curriculum, or in courses CS102 (I/O/B versions), CS103 (I/O/B ver-
sions), CS111 (A version), and/or CS112 (A/I/O/F/H versions), as described in the
IEEE/ACM 2001 Computing Curriculum, with instructional units as outlined in

Table

0.1.

Instructional Unit

Relevant Material

PL1. Overview of Programming Languages | Chapters 1 & 2
PL2. Virtual Machines Sections 14.1.1, 14.1.2, & 14.1.3
PL3. Introduction to Language Translation | Section 1.9

PL4. Declarations and Types Sections 1.1, 2.4, & 2.5

PL5. Abstraction Mechanisms Sections 2.4,5.1,5.2,5.3,6.1.1,6.2, 6.4,
6.3,7.1,7.3.1,8.1,9.1,9.5,11.4, & 13.1

PL6. Object-Oriented Programming Chapters 1 & 2 and Sections 6.2.2, 6.3,

7.3.7,8.1.2, & 13.3.1

PF1

. Fundamental Programming Constructs

Chapters 1 & 2

PF2.

Algorithms and Problem-Solving

Sections 1.9 & 4.2

PF3.

Fundamental Data Structures

Sections 3.1, 5.1-3.2, 5.3, , 6.1-6.4, 7.1,
7.3,8.1,8.3,9.1-94, 10.1, & 13.1

PF4. Recursion Section 3.5

SE1. Software Design Chapter 2 and Sections 6.2.2, 6.3, 7.3.7,
8.1.2, & 13.3.1

SE2. Using APIs Sections 2.4, 5.1,5.2,5.3,6.1.1,6.2, 6.4,
6.3,7.1,7.3.1,8.1,9.1,9.5,11.4, & 13.1

ALL1. Basic Algorithmic Analysis Chapter 4

AL2. Algorithmic Strategies Sections 11.1.1,11.5.1,12.3.1,124.2, &
12.2

AL3. Fundamental Computing Algorithms Sections 8.1.4, 8.2.2, 8.3.5,9.2, & 9.3.1,
and Chapters 11, 12, & 13

DS1. Functions, Relations, and Sets Sections 4.1, 8.1, & 11.4

DS3. Proof Techniques Sections 4.3, 6.1.4,7.3.3, 8.3, 10.2, 10.3,
10.4, 10.5, 11.2.1, 11.3.1, 11.4.3, 13.1,
13.3.1, 13.4, & 13.5

DS4. Basics of Counting Sections 2.2.3 & 11.1.5

DS5. Graphs and Trees Chapters 7, 8, 10, & 13

DS6. Discrete Probability Appendix A and Sections 9.2.2, 9.4.2,

11.2.1, & 11.5

Table 0.1: Material for Units in the IEEE/ACM 2001 Computing Curriculum.

Preface xi

Contents and Organization

The chapters for this course are organized to provide a pedagogical path that starts
with the basics of Java programming and object-oriented design. We provide an
early discussion of concrete structures, like arrays and linked lists, so as to provide
a concrete footing to build upon when constructing other data structures. We then
add foundational techniques like recursion and algorithm analysis, and, in the main
portion of the book, we present fundamental data structures and algorithms, con-
cluding with a discussion of memory management (that is, the architectural under-

pinnings of data structures). Specifically, the chapters for this book are organized
as follows:

Java Programming Basics
Object-Oriented Design

Arrays, Linked Lists, and Recursion
Mathematical Foundations

Stacks and Queues

List Abstractions

Tree Structures

Priority Queues

ool I O .

Maps and Dictionaries

p—
e

Search Tree Structures

p—
p—

. Sorting and Selection

—
[\

. Text Processing

—_
(98]

. Graphs

(SN
N

. Memory

A. Useful Mathematical Facts

A more detailed listing of the contents of this book can be found in the table of
contents.

Preface

Prerequisites

We have written this book assuming that the reader comes to it with certain knowl-
edge. We assume that the reader is at least vaguely familiar with a high-level pro-
gramming language, such as C, C++, Python, or Java, and that he or she under-
stands the main constructs from such a high-level language, including:

Variables and expressions.

Methods (also known as functions or procedures).

Decision structures (such as if-statements and switch-statements).

e Iteration structures (for-loops and while-loops).

For readers who are familiar with these concepts, but not with how they are ex-
pressed in Java, we provide a primer on the Java language in Chapter 1. Still, this
book is primarily a data structures book, not a Java book; hence, it does not provide
a comprehensive treatment of Java. Nevertheless, we do not assume that the reader
is necessarily familiar with object-oriented design or with linked structures, such
as linked lists, for these topics are covered in the core chapters of this book.

In terms of mathematical background, we assume the reader is somewhat famil-
iar with topics from high-school mathematics. Even so, in Chapter 4, we discuss
the seven most-important functions for algorithm analysis. In fact, sections that use
something other than one of these seven functions are considered optional, and are
indicated with a star (). We give a summary of other useful mathematical facts,
including elementary probability, in Appendix A.

About the Authors

Professors Goodrich and Tamassia are well-recognized researchers in algorithms
and data structures, having published many papers in this field, with applications
to Internet computing, information visualization, computer security, and geomet-
ric computing. They have served as principal investigators in several joint projects
sponsored by the National Science Foundation, the Army Research Office, the Of-
fice of Naval Research, and the Defense Advanced Research Projects Agency. They
are also active in educational technology research.

Michael Goodrich received his Ph.D. in Computer Science from Purdue Uni-
versity in 1987. He is currently a Chancellor’s Professor in the Department of Com-
puter Science at University of California, Irvine. Previously, he was a professor at
Johns Hopkins University. He is an editor for a number of journals in computer
science theory, computational geometry, and graph algorithms. He is an ACM Dis-
tinguished Scientist, a Fellow of the American Association for the Advancement of
Science (AAAS), a Fulbright Scholar, and a Fellow of the IEEE. He is a recipient of
the IEEE Computer Society Technical Achievement Award, the ACM Recognition
of Service Award, and the Pond Award for Excellence in Undergraduate Teaching.

Preface

xiii

Roberto Tamassia received his Ph.D. in Electrical and Computer Engineering
from the University of Illinois at Urbana-Champaign in 1988. He is the Plastech
Professor of Computer Science and the Chair of the Department of Computer Sci-
ence at Brown University. He is also the Director of Brown’s Center for Geometric
Computing. His research interests include information security, cryptography, anal-
ysis, design, and implementation of algorithms, graph drawing and computational
geometry. He is an IEEE Fellow and a recipient of the Technical Achievement
Award from the IEEE Computer Society, for pioneering the field of graph draw-
ing. He is an editor of several journals in geometric and graph algorithms. He
previously served on the editorial board of IEEE Transactions on Computers.

In addition to their research accomplishments, the authors also have extensive
experience in the classroom. For example, Dr. Goodrich has taught data structures
and algorithms courses, including Data Structures as a freshman-sophomore level
course and Introduction to Algorithms as an upper level course. He has earned sev-
eral teaching awards in this capacity. His teaching style is to involve the students in
lively interactive classroom sessions that bring out the intuition and insights behind
data structuring and algorithmic techniques. Dr. Tamassia has taught Data Struc-
tures and Algorithms as an introductory freshman-level course since 1988. One
thing that has set his teaching style apart is his effective use of interactive hyper-
media presentations integrated with the Web.

Acknowledgments

There are a number of individuals who have made contributions to this book.

We are grateful to all our research collaborators and teaching assistants, who
provided feedback on early drafts of chapters and have helped us in developing
exercises, software, and algorithm animation systems. In particular, we would
like to thank Jeff Achter, Vesselin Arnaudov, James Baker, Ryan Baker, Benjamin
Boer, Mike Boilen, Devin Borland, Lubomir Bourdev, Stina Bridgeman, Bryan
Cantrill, Yi-Jen Chiang, Robert Cohen, David Ellis, David Emory, Jody Fanto, Ben
Finkel, Peter Frohlich, Ashim Garg, Natasha Gelfand, Mark Handy, Michael Horn,
Greg Howard, Benoit Hudson, Jovanna Ignatowicz, Seth Padowitz, Babis Papa-
manthou, James Piechota, Dan Polivy, Seth Proctor, Susannah Raub, Haru Sakai,
Andy Schwerin, Michael Shapiro, Mike Shim, Michael Shin, Galina Shubina, Amy
Simpson, Christian Straub, Ye Sun, Nikos Triandopoulos, Luca Vismara, Danfeng
Yao, Jason Ye. and Eric Zamore. Lubomir Bourdev, Mike Demmer, Mark Handy,
Michael Horn, and Scott Speigler developed a basic Java tutorial, which ultimately
led to Chapter 1, Java Primer. Special thanks go to Eric Zamore, who contributed
to the development of the Java code examples in this book and to the initial design,
implementation, and testing of the net.datastructures library of data structures and
algorithms in Java. We are also grateful to Vesselin Arnaudov and Mike Shim for

xiv

Preface

testing the current version of net.datastructures, and to Jeffrey Bosboom for addi-
tional Java code examples and updates. Comments from students and instructors
who have used previous editions of this book have helped shape this edition.

There have been a number of friends and colleagues whose comments have
lead to improvements in the text. We are particularly thankful to Karen Goodrich,
Art Moorshead, David Mount, Scott Smith, and Ioannis Tollis for their insightful
comments. In addition, contributions by David Mount to Section 3.5 and to several
figures are gratefully acknowledged.

We are also truly indebted to the outside reviewers and readers for their co-
pious comments, emails, and constructive criticism, which were extremely use-
ful in writing this edition. We specifically thank the following reviewers for their
comments and suggestions: Divy Agarwal, University of California, Santa Bar-
bara; Terry Andres, University of Manitoba; Bobby Blumofe, University of Texas,
Austin; Michael Clancy, University of California, Berkeley; Larry Davis, Univer-
sity of Maryland; Scott Drysdale, Dartmouth College; Arup Guha, University of
Central Florida; Chris Ingram, University of Waterloo; Stan Kwasny, Washington
University; Calvin Lin, University of Texas at Austin; John Mark Mercer, McGill
University; Laurent Michel, University of Connecticut; Leonard Myers, California
Polytechnic State University, San Luis Obispo; David Naumann, Stevens Institute
of Technology; Robert Pastel, Michigan Technological University; Bina Rama-
murthy, SUNY Buffalo; Ken Slonneger, University of Iowa; C.V. Ravishankar,
University of Michigan; Val Tannen, University of Pennsylvania; Paul Van Ar-
ragon, Messiah College:; and Christopher Wilson, University of Oregon.

We are grateful to our editor, Beth Golub, for her enthusiastic support of this
project. The team at Wiley has been great. Many thanks go to Mike Berlin, Lilian
Brady, Regina Brooks, Paul Crockett, Richard DeLorenzo, Simon Durkin, Miche-
line Frederick, Lisa Gee, Katherine Hepburn, Rachael Leblond, Andre Legaspi,
Madelyn Lesure, Frank Lyman, Hope Miller, Bridget Morrisey, Chris Ruel, Ken
Santor, Lauren Sapira, Dan Sayre, Diana Smith, Bruce Spatz, Dawn Stanley, Jeri
Warner, and Bill Zobrist.

The computing systems and excellent technical support staff in the departments
of computer science at Brown University and University of California, Irvine gave
us reliable working environments. This manuscript was prepared primarily with
the ISTEX typesetting package.

Finally, we would like to warmly thank Isabel Cruz, Karen Goodrich, Giuseppe
Di Battista, Franco Preparata, loannis Tollis, and our parents for providing advice,
encouragement, and support at various stages of the preparation of this book. We
also thank them for reminding us that there are things in life beyond writing books.

Michael T. Goodrich
Roberto Tamassia

Contents

1 Java Programming Basics 1
1.1 Getting Started: Classes, Types, and Objects 2
1.1.1 BaseTypes 5

1.1.2 Objects 7
1.1.3 Enum Types oo o 14

1.2 Methods 15
1.3 Expressions 20
131 Literals. 20
1.32 Operators 21
1.3.3 Casting and Autoboxing/Unboxing in Expressions 25

1.4 Control Flow 27
1.4.1 The If and Switch Statements 27
142 Loops 29
1.4.3 Explicit Control-Flow Statements 32

1.5 Arrays 34
1.5.1 Declaring Arrayso 36

152 Arraysare Objects. 37

1.6 Simple Input and OQutput 39
1.7 An Example Program 42
1.8 Nested Classes and Packages 45
1.9 Writing a Java Program 47
1.91 Design e 47
1.9.2 Pseudo-Code 48
193 Coding 49
1.9.4 Testing and Debugging 53

1.10 Exercises 55
2 Object-Oriented Design 57
2.1 Goals, Principles, and Patterns 58
2.1.1 Object-Oriented Design Goals 58
2.1.2 Object-Oriented Design Principles 59
2.1.8 Desigh Patters « = & = s s w5 v 5 5w v 25 w s 5 5 62

Xvi

Contents

2.2 Inheritance and Polymorphism
2.2.1 Inheritance
2.2.2 Polymorphism

2.2.3 Using Inheritance in Java
2.3 Exceptions

2.3.1 Throwing Exceptions
2.3.2 Catching Exceptions
2.4 Interfaces and Abstract Classes
241 Implementing Interfaces

2.4.2 Multiple Inheritance in Interfaces
2.4.3 Abstract Classes and Strong Typing
2.5 Castingand Generics
251 Casting
252 Generics
2.6 EXEFCISES: .« . v « 5 o 56 5 54 5 m 5080 5 ;o « Bs o s s e e

Arrays, Linked Lists, and Recursion
3.1 Using Arrays
3.1.1 Storing Game Entriesinan Array
3.1.2 Sortingan Array
3.1.3 java.util Methods for Arrays and Random Numbers . . .
3.1.4 Simple Cryptography with Strings and Character Arrays .
3.1.5 Two-Dimensional Arrays and Positional Games
3.2 Singly Linked Lists
3.2.1 Insertion in a Singly Linked List
3.2.2 Removing an Element in a Singly Linked List
3.3 Doubly Linked Lists
3.3.1 Insertion in the Middle of a Doubly Linked List
3.3.2 Removal in the Middle of a Doubly Linked List
3.3.3 An Implementation of a Doubly Linked List
3.4 Circularly Linked Lists and Linked-List Sorting
3.4.1 Circularly Linked Lists and Duck, Duck, Goose
3.42 Sorting a Linked List
3.5 Recursion
3.5.1 Linear Recursion
3.5.2 Binary Recursion L.
3.5.3 Multiple Recursion
3.6 Exercises

Contents Xvii

4 Mathematical Foundations 157
4.1 The Seven Functions Used in This Book 158
4.1.1 The Constant Function 158
4.1.2 The Logarithm Function 158
4.1.3 The Linear Function 160
414 The N-Log-N Function 160
415 The Quadratic Function 160
4.1.6 The Cubic Function and Other Polynomials 162
4.1.7 The Exponential Function. 163
4.1.8 Comparing Growth Rates 165

4.2 Analysis of Algorithms 166
421 Experimental Studies 167
4.2.2 Primitive Operations 168
4.2.3 Asymptotic Notation 170
424 Asymptotic Analysis 174
4.2.5 Using the Big-Oh Notation 176
4.2.6 A Recursive Algorithm for Computing Powers 180
4.2.7 Some More Examples of Algorithm Analysis 181

4.3 Simple Justification Techniques 185
431 ByExample L 185
432 The “Contra” Attack 185
4.3.3 Induction and Loop Invariants 186

4.4 Exercises 189
5 Stacks and Queues 197
5.1 SYaCKS . o : o ¢ w5 5 s 955 86 ¢ mos m s E s m s e A6 s A 198
5.1.1 The Stack Abstract Data Type 199
5.1.2 A Simple Array-Based Stack Implementation 202
5.1.3 Implementing a Stack with a Generic Linked List 207
5.1.4 Reversing an Array Usinga Stack 209
5.1.5 Matching Parentheses and HTML Tags 210

5.2 Queues 214
5.2.1 The Queue Abstract Data Type 214
5.2.2 A Simple Array-Based Queue Implementation 217
5.2.3 Implementing a Queue with a Generic Linked List 220
5.2.4 Round Robin Schedulers 221

5.3 Double-Ended Queues 223
5.3.1 The Deque Abstract Data Type 223
5.3.2 Implementinga Deque 224
5.3.3 Deques in the Java Collections Framework 227

5.4 Exercises 228

xviii Contents
6 List Abstractions 233
6.1 Array Lists 234
6.1.1 The Array List Abstract Data Type 234
6.1.2 The Adapter Pattern 235
6.1.3 A Simple Array-Based Implementation 236
6.1.4 A Simple Interface and the java.util.ArrayList Class . . . 238
6.1.5 Implementing an Array List Using Extendable Arrays . . 239

6.2 Node Lists 243
6.2.1 Node-Based Operations 243
6.2.2 Positions 244
6.2.3 The Node List Abstract Data Type 244
6.2.4 Doubly Linked List Implementation 248

6.3 lterators 254
6.3.1 The lterator and Iterable Abstract Data Types 254
6.3.2 The Java For-Each Loop 256
6.3.3 Implementing lterators 257
6.3.4 List lteratorsinJava 259

6.4 List ADTs and the Collections Framework 260
6.4.1 Lists in the Java Collections Framework 260
6.4.2 Sequences 264

6.5 Case Study: The Move-to-Front Heuristic 267
6.5.1 Using a Sorted List and a Nested Class 267
6.5.2 Using a List with the Move-to-Front Heuristic 270
6.5.3 Possible Uses of a Favorites List 271

6.6 Exercises 274
7 Tree Structures 279
7.1 General Trees. 280
7.1.1 Tree Definitions and Properties 281
7.1.2 The Tree Abstract Data Type 284
7.1.3 Implementinga Tree 285

7.2 Tree Traversal Algorithms 287
7.2.1 Depth and Height 287
7.2.2 Preorder Traversal 290
7.2.3 Postorder Traversal 293

7.3 Binary Trees 296
7.3.1 The Binary Tree ADT 298
7.3.2 A Binary Tree Interfacein Java 298
7.3.3 Properties of Binary Trees 299
7.3.4 A Linked Structure for Binary Trees 301
7.3.5 An Array-List Representation of a Binary Tree 310

