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PREFACE

The first edition of this book was written to provide an introduction to those branches
of postcalculus mathematics with which the average analytical engineer or physicist
needs to be reasonably familiar in order to carry on his own work effectively and keep
abreast of current developments in his field. In the present edition, as in the second
and third, although the material has been largely rewritten, the various additions,
deletions, and refinements have been made only because they seemed to contribute
to the achievement of this goal.

Because ordinary differential equations are probably the most immediately useful
part of postcalculus mathematics for the student of applied science, and because the
techniques for solving simple ordinary differential equations stem naturally from the
techniques of calculus, this book begins with a chapter on ordinary differential
equations of the first order and their applications. This is followed by two other
chapters on ordinary differential equations, which develop the theory and applications
of linear equations and systems of linear equations with constant coefficients. In
particular, a new section on Green’s function and its interpretation as an influence
function has been added to the first of these two chapters. Following these is a chapter
on finite differences containing the usual applications to interpolation, numerical
differentiation and integration, and the step-by-step solution of differential equations
using both Milne’s method and the Runge-Kutta method. There is also a section on
linear difference equations with constant coefficients closely paralleling the preceding
development for differential equations and a section on the method of least squares
and the related topic of orthogonal polynomials. It is hoped that the material in this
chapter will provide a useful background in classical finite differences, on which a
more extensive course in computer-oriented numerical analysis can be based. Chapter
5 is devoted to the application of the preceding ideas to mechanical and electrical
systems, and, as in the first three editions, the mathematical identity of these fields is
emphasized. The next two chapters deal first with partial differential equations and
boundary-value problems and second with Bessel functions and Legendre poly-
nomials, very much as in the third edition though with a number of new examples
and exercises.

Chapters 10 and 11 deal with determinants and matrices as far as the Cayley-
Hamilton theorem, Sylvester’s identity, and infinite series of matrices and their use in
solving matric differential equations. Chapter 12 is a new chapter on the calculus of
variations, covering such topics as the maxima and minima of functions of several
variables, Lagrange’s multipliers, the extremal properties of the eigenvalues of matric
equations, Euler’s equation, Hamilton’s principle, and Lagrange’s equation. Chapters
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13 and 14 deal with vector and tensor analysis. The last four chapters provide an
introduction to the theory of functions of a complex variable, with applications to the
evaluation of real definite integrals, the complex inversion integral, stability criteria,
conformal mapping, and the Schwarz-Christoffel transformation.

This book falls naturally into three major subdivisions. The first nine chapters
constitute a reasonably self-contained treatment of ordinary and partial differential
equations and their applications. The next five chapters cover the related areas of
linear algebra, the calculus of variations, and vector and tensor analysis. The last four
chapters cover the elementary theory and applications of functions of a complex
variable. With this organization, the book, which contains enough material for a
2-year postcalculus course in applied mathematics, is well adapted for use as a text
for any of seyeral shorter courses.

In this edition, as in the first three, every effort has been made to keep the presenta-
tion detailed and clear while at the same time maintaining acceptable standards of
precision and accuracy. To achieve this, more than the usual number of worked
examples and carefully drawn figures have been included, and in every development
there has been a conscious attempt to make the transitions from step to step so clear
that a student with no more than a good background in calculus, working with paper
and pencil, should seldom be held up more than momentarily. Over 750 new exercises
of varying degrees of difficulty have been added to the 1,387 problems which appeared
in the third edition. Many of these involve extensions of topics presented in the text or
related topics which could not be treated because of limitations of space. Hints are
included in many of the exercises, and answers to the odd-numbered ones are given at
the end of the book. As in the first three editions, words and phrases defined informally
in the body of the text are set in boldface. Illustrative examples are set.in type of a
different size from that used for the main body of the text.

The indebtedness of the author to his colleagues, students, and former teachers is
too great to catalog, and to all who have given help and encouragement in the prepara-
tion of this book, I can offer here only a most inadequate acknowledgment of my
appreciation. In particular, I am deeply grateful to those users of this book, both
teachers and students, who have been kind enough to write me their impressions and
criticisms of the first three editions and their suggestions for an improved fourth
edition. Finally, I must express my gratitude to my wife Ellen and my student Moffie
Hills, who have shared with me the task of proofreading the manuscript in all its stages.

C. Ray Wylie



TO THE
STUDENT

This book has been written to help you in your development as an applied scientist,
whether engineer, physicist, chemist, or mathematician. It contains material which
you will find of great use, not only in the technical courses you have yet to take, but
also in your profession after graduation as long as you deal with the analytical aspects
of your field.

I have tried to write a book which you will find not only useful but also easy to
study from, at least as easy as a book on advanced mathematics can be. There is a
good deal of theory in it, for it is the theoretical portion of a subject which is the basis
for the nonroutine applications of tomorrow. But nowhere will you find theory for its
own sake, interesting and legitimate as this may be to a pure mathematician. Our
theoretical discussions are designed to illuminate principles, to indicate generaliza-
tions, to establish limits within which a given technique may or may not safely be
used, or to point out pitfalls into which one might otherwise stumble. On the other
hand, there are many applications illustrating, with the material at hand, the usual
steps in the solution of a physical problem: formulation, manipulation, and inter-
pretation. These examples are, without exception, carefully set up and completely
worked, with all but the simplest steps included. Study them carefully, with paper and
pencil at hand, for they are an integral part of the text. If you do this, you should find
the exercises, though challenging, still within your ability to work.

Terms defined informally in the body of the text are always indicated by the use of
boldface type. Italic type is used for emphasis. It is suggested that you read each
section through for the main ideas before you concentrate on filling in any of the
details. You will probably be surprised at how many times a detail which seems to
hold you up in one paragraph is explained in the next as the discussion unfolds.

Because this book is long and contains material suitable for various courses, your
instructor may begin with any of a number of chapters. However, the overall structure
of the book is the following: The first nine chapters are devoted to the general theme
of ordinary and partial differential equations and related topics. Here you will find
basic analytical techniques for solving the equations in which physical problems
must be formulated when continuously changing quantities are involved. Chapters 10
through 14 deal with the somewhat related topics of matrix theory and linear algebra,
the calculus of variations, vector analysis, and an introduction to generalized co-
ordinates and tensor analysis. Finally, Chapters 15 to 18 provide an introduction to
the theory and applications of functions of a complex variable. (Chapter 4, in par-
ticular, is worthy of note because it provides an introduction to numerical analysis,



Xii To the Student

the modern field which deals with techniques for obtaining numerical answers to
problems too complicated to be solved by exact analytic methods.)

It has been gratifying to receive letters from students who have used this book,
giving me their reactions to it, pointing out errors and misprints in it, and offering
suggestions for its improvement. Should you be inclined to do so, I should be happy
to hear from you also. And now good luck and every success.

C. Ray Wylie
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CHAPTER1

Ordinary Differential Equations
of the First Order

1.1 Introduction

An equation involving one or more derivatives of a function is called a differential
equation. By a solution of a differential equation is meant a relation between the
dependent and independent variables which is free of derivatives and which, when
substituted into the given equation, reduces it to an identity. The study of the exist-
ence, nature, and determination of solutions of differential equations is of fundamental
importance not only to the pure mathematician but also to anyone engaged in the
mathematical analysis of natural phenomena.

In general, a mathematician considers it a triumph if he is able to prove that a
given differential equation possesses a solution and if he can deduce a few of the more
important properties of that solution. A physicist or engineer, on the other hand, is
usually greatly disappointed if a specific expression for the solution cannot be ex-
hibited. The usual compromise is to find some practical procedure by means of which
the required solution can be approximated with satisfactory accuracy.

Not all differential equations are difficult enough to make this necessary, however,
and there are several large and very important classes of equations for which solutions
can readily be found. For instance, an equation such as

dy

—_— X

T fx)
is really a differential equation, and the integral

2= ff(x) d 2 o

is a solution. More generally, the equation

n

d"y
ax"

is a differential equation whose solution can be found by n successive integrations.
Except in name, the process of integration is actually an example of a process for
solving differential equations.

In this and the following two chapters we shall consider differential equations
which are next in difficulty after those which can be solved by direct integration.
These equations form only a very small part of the class of all differential equations,
and yet with a knowledge of them a scientist is equipped to handle a great variety of
applications. To get so much for so little is indeed remarkable.

= g(x)
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1.2 Fundamental Definitions

If the derivatives which appear in a differential equation are total derivatives, the
equation is called an ordinary differential equation; if partial derivatives occur, the
equation is called a partial differential equation. By the order of a differential equation
is meant the order of the highest derivative which appears in the equation.

EXAMPLE 1
The equation x2y” + xy" + (x* — 4)y = 0 is an ordinary differential equation of the
second order connecting the dependent variable y with its first and second derivatives
and with the independent variable x.

EXAMPLE 2

The equation
*u " o*u & *u 0
ox* | ox2 oy oyt

is a partial differential equation of the fourth order.

At present we shall be concerned exclusively with ordinary differential equations.
An equation which is linear, i.e., of the first degree, in the dependent variable and
its derivatives is called a linear differential equation. From this definition it follows
that the most general (ordinary) linear differential equation of order » is of the form

1 Po)Y™ + pi ()Y 4+ Py ()Y + pu(X)y = r(x)

A differential equation which is not linear, i.e., cannot be put in the form (1), is said
to be nonlinear. In general, linear equations are much easier to solve than nonlinear
ones, and most elementary applications involve linear equations.

EXAMPLE 3

The equation y” + 4xy” + 2y = cos x is a linear equation of the second order. The
presence of the terms xy” and cos x does not alter the fact that the equation is linear,
because, by definition, linearity is determined solely by the way the dependent variable y
and its derivatives enter into combination among themselves.

EXAMPLE 4

The equation y” + 4yy’ + 2y = cos x is a nonlinear equation because of the occurrence
of the product of y and one of its derivatives.

EXAMPLE 5

The equation y” + sin y = 0 is nonlinear because of the presence of sin y, which is a
nonlinear function of y.

As illustrated by the simple differential equation
dy

_=e—

dx

12
and its solution

y = Je"‘zdx +c
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the solution of a differential equation may depend upon integrals which cannot be
evaluated in terms of elementary functions. This example also illustrates the fact that
a solution of a differential equation usually involves one or more arbitrary constants.

A detailed treatment of the question of the maximum number of essential arbitrary
constants that a solution of a differential equation may contain or even of what is
meant by essential constants is quite difficult.} For our purposes, if an expression
contains n arbitrary constants, we shall consider them essential if they cannot, through
formal rearrangement of the expression, be replaced by any smaller number of con-
stants. For example,

) acos? x + bsin? x + ¢ cos 2x
contains three arbitrary constants. However, since
— 2 22
cos 2x = cos“ x — sin” x
the expression (2) can be written in the form
2 i 2 2 . 2 _ 2 B o i02
a cos® x + bsin® x + c(cos®* x — sin® x) = (@ + ¢) cos* x + ( ¢) sin” x
= dcos’ x + esin® x

where d = a + ¢ and e = b — c. The fact that the three arbitrary constants a, b,
and ¢ can be replaced by the two constants d and e shows that the former are not all
essential. On the other hand, since cos? x and sin? x are linearly independent} (where-
as cos? x, sin” x, and cos 2x are linearly dependent), it follows that there is no further
rearrangement of the given expression that will permit d and e to be combined into,
and replaced by, a single new arbitrary constant. Hence d and e are essential.

It is frequently the case (especially with linear equations) that a differential equa-
tion of order n possesses solutions containing » essential arbitrary constants, or
parameters, but none containing more. However, there are equations such as
dy

+ ]yl =0
Ix [yl

(which clearly has only the single solution y = 0) and

+1=0

dx

(which has no solutions at all) which possess no solutions containing any arbitrary
constants. Moreover, there are also simple differential equations which possess
solutions containing more essential parameters than the order of the equation. For
instance it is easy to verify that the arc of the family y = ¢;x* (x < 0) (Fig. 1.1a)
corresponding to any value of ¢, can be paired with the arc of the family y = ¢,x?

(x = 0) (Fig. 1.1b) corresponding to any value of c,, to give a function which satisfies
the differential equation

3) xy' =2y

t See, forinstance, R. P. Agnew, “Differential Equations,” 2d ed., pp. 103-105, McGraw-Hill,
New York, 1960.

1 See Definitions 1 and 2, Sec. 10.5.
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cr=1

¢ = -

&
2

c,=-1
(a) ® (c)

Figure 1.1
Arcs of different parabolas of the family y = cx? pieced together to give solutions of
the differential equation xy’ = 2y.

for all values of x (Fig. 1.1¢). In other words, for all choices of the two essential
constants ¢; and c,, the rule

defines a function which is continuous and differentiable for all values of x and which
satisfies the equation (3) over the entire x axis. A still more striking example of this
sort appears in Exercise 44, where a first-order equation with a solution containing
infinitely many essential parameters is given.

As the foregoing suggests, it is difficult, if not impossible, to make statements valid
for all differential equations. The theory of differential equations is essentially a body
of theorems concerning particular classes of equations defined by such considerations
as the order and linearity of the equation and the continuity and boundedness of its
coefficients. Typical of these theorems is the following result, which is of fundamental
importance in the theory of the equations we shall consider in this chapter, namely,
equations of the first order.

THEOREM 1 Let (x,,),) be a point of the xy plane; let R be the rectangular
region defined by the inequalities |x — xo| < a, |y — yo| < b; let f(x,y) and
fy(x,y) = 9f(x,y)/0y be single-valued and continuous at all points of R; let M be a
constant such that | f(x,y)] < M at all points of R; and let # be the smaller of the
numbers a and b/M. Then, on the interval |[x — x,| < A, there is a unique continuous
function y which satisfies the equation 3’ = f(x,y) and takes on the value y, when
X = Xq.

T See, for instance, M. Golomb and M. E. Shanks, “Elements of Ordinary Differential
Equations,” 2d ed., pp. 63-78, McGraw-Hill, New York, 1965.



Section 1.2 Fundamental Definitions 5

It is instructive to reconsider Eq. (3) in the light of Theorem 1. For this equation
we have f(x,y) = 2y/x, and, clearly, neither f nor f, exists when x = 0. Hence, it
follows from Theorem 1 that over an interval containing x = 0 neither the existence
nor the uniqueness of a solution of Eq. (3) can be guaranteed. Actually, as our earlier
discussion pointed out, Eq. (3) does have solutions which are valid for all values of x.
However, as Fig. 1.1c illustrates, over any interval which contains x = 0, the solution
curve which passes through a given point (x,,,), for example, (1,1), is not unique.
On the other hand, according to Theorem 1, over any interval which contains x, but
does not contain x = 0, the solution curve which passes through a given point
(x0,¥0) is unique.

Almost all applications of differential equations involve equations which possess
solutions containing at least one arbitrary constant, and for such equations it is con-
venient to introduce the following definitions. A solution which contains at least one
arbitrary constant is called a general solution. A solution obtained from a general
solution by assigning particular values to the arbitrary constants which appear in it
is called a particular solution. Solutions which cannot be obtained from any general
solution by assigning specific values to its arbitrary constants are called singular
solutions. If a general solution has the property that every solution of the differential
equation can be obtained from it by assigning suitable values to its arbitrary constants,
it is said to be a complete solution. A general solution can thus be thought of as a
description of some family of particular solutions, and a complete solution can be
thought of as a description of the set of all solutions of the given equation.

It is important to note that we speak of a general solution and a complete solution
of a differential equation and not of the general solution and the complete solution.
If an equation has a general solution or a complete solution, it has many such solu-
tions, and these may differ significantly in form. Moreover, in particular problems
involving differential equations, the choice of which complete solution to use often
has an important bearing on the ease with which the problem can be solved.

EXAMPLE 6

Verify that y = ae™* + be?* is a solution of the equation y” — »" — 2y = 0 for all
values of the constants @ and 5.

By differentiating y, substituting into the differential equation as indicated, and
then collecting terms on a and b, we obtain

(ae™* + 4be**) — (—ae ™ + 2be**) — 2(ae™* + be**)
=(e™* + e™* — 2e"¥)a + (4e** — 2e** — 2e*¥)b
=0a+0=0

for all values of aand b. Thus, y = ae™* + be?* is a general solution of y” — )’ — 2y =
0. In fact, as we shall see in Sec. 2.2, it is a complete solution of this equation.

It is interesting to note that although y;, = ae™* and y, = be?* also satisfy the
equation yy” — (»')> = 0, the sum y = y; + y, = ae™* + be®* is not a solution of
yy" — (¥)* = 0. In fact, differentiating, substituting, and simplifying, we have

(ae™* + be**)(ae™* + 4be**) — (—ae™* + 2be?*)?* = 9abe*

and this cannot vanish identically unless either a or b is zero, i.e., unless the sum y
consists of just one or the other of the two individual solutions. Roughly speaking, the
reason for this difference in behavior is that the equation y” — »* — 2y = 0 is linear,
whereas the equation yy” — (»")? = 0 is nonlinear. More precisely, as we shall see in



