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Preface

It has been recognized for many years that heterophase boundaries—interfaces between
dissimilar materials—play a key role in determining the properties and performance of
modern materials systems. The influence of heterophase boundaries in composites is
widely recognized, and Chapter 2 discusses this matter.

The field of material technology will require scientific and industrial leadership in
the next decade because this is one of several areas expected to experience unbelievable
growth. To be involved in this explosion, highly specialized individuals with in-depth
knowledge of materials design, process design, and product design and corporations must
develop new materials and new processes to point to new pathfinder directions, routes,
and roadmaps, and to stimulate thinking.

As has happened in the past, new scientific endeavors can be expected to create a
demand for new and different materials. New ideas being explored include intermetallics,
metal-ceramics, metal-carbons or graphites, ceramic-carbons, and plastic-ceramics. In the
near future, hypersonic flight will create a need for many different and new combinations
of these materials at material temperatures of 982—1482°C for up to 1 h for the trip from
atmosphere to orbit and back again. High-modulus materials will also be required for
parts of the structure. Other needs will require composites for liquid pressure tanks, high-
conductivity structures, oxidation- and temperature-resistant ceramic matrices, diesel en-
gines, and brake motors, as well as for a broad spectrum of uses in other industries such
as electronics and computers.

It has been shown that in the modern world, advances in materials not only expand
our technological capabilities but also become catalysts that drive capitalistic en-
trepreneurship and in turn allow society to maintain economic growth. Continuing ad-
vances in technology are absolutely critical to sustaining and improving the quality of life.



xvi Preface

The “engineered materials age” is now, and we are able to put together, in some
instances atom by atom, materials that are lighter, stronger, more conductive, more
resilient, and smarter, and that have “memories.”

Many of the materials we produce today are considered technologically mature. But
the processes used to manufacture these metal, ceramic, and polymer composites are go-
ing through a revolution.

In the future smart software will design both the products and the production
method. Concurrent engineering of composite materials is the technique needed to meet
and keep a generation ahead of competition and stay focused on better manufacturability.
This is significantly important because difficult-to-manufacture parts are universally
difficult to manufacture, especially when the manufacturing processes employed have
been developed for moderate to high volumes and requirements have actually fallen
to low-volume levels in response to the worldwide recession or because of competitive
pressures.

The early chapters of Volume I cover a general introduction to the major composite
families, the fibers and matrix combinations and their properties, and how these materials
have been strengthened by various mechanisms while overcoming, for example, in-
compatibility problems. The remaining chapters cover composite design, modeling, me-
chanical properties, nondestructive evaluation and repair methods, and the major uses and
applications in the various industries.

Mel M. Schwartz
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General Introduction
to Advanced Composites

1.0 INTRODUCTION

It is evident that material advances have been the key to significant technology break-
throughs throughout history. The Stone Age, the Iron Age, the Industrial Revolution, the
nuclear age, the electronic revolution, the aerospace era of today—all have critically de-
pended on, or resulted from, breakthroughs in material technology.

Today we are in the midst of a new revolution triggered by the onset of advanced
composites. This radically new class of materials is characterized by the marriage of quite
diverse individual components that work together to produce capabilities that far exceed
those of their separate elements. Their unique properties make them the enabling materi-
als for major technological advances. Industry representatives believe these materials will
be critical to the economic trade picture well into the twenty-first century.

Typically, advanced materials have been characterized by a lengthy development
cycle (20 years).! Today, the use of composite materials in structures of all kinds is accel-
erating rapidly, with the major impact already being felt in the aerospace industry where
the use of composites has directly enhanced the capability of fuel-efficient aircraft in the
commercial arena and new-generation aircraft in the military sphere. The increasing us-
age of these materials is spreading worldwide, capitalizing on developments that were the
direct result of a large investment in the technology over the last two or more decades.



2 General Introduction to Advanced Composites Chap. 1

1.1 WHAT ARE COMPOSITES?

In their broadest form, composites are the result of embedding high-strength, high-stiff-
ness fibers of one material in a surrounding matrix of another material. The fibers of in-
terest for composites are generally in the form of either single fibers about the thickness
of a human hair or multiple fibers twisted together in the form of a yarn or tow. When
properly produced, these fibers—usually of a nonmetallic material such as carbon, silicon
carbide, boron, or alumina—can have very high values of strength and stiffness. As a re-
sult of work that started in the United States in the early 1950s, there are available to us
thin, continuous fibers of a variety of materials, together with the manufacturing capabil-
ity to produce them on a continuous basis. In addition to continuous fibers, there are also
varieties of short fibers, whiskers, platelets, and particulates intended for use in discontin-
uous reinforced composites.

Fiber-reinforced composite materials consist of fibers of high strength and modulus
embedded in or bonded to a matrix with distinct interfaces (boundaries) between them. In
this form, both fibers and matrix retain their physical and chemical identities, yet they
produce a combination of properties that cannot be achieved with either of the con-
stituents acting alone. In general, the fibers are the principal load-carrying members,
whereas the surrounding matrix keeps them in the desired location and orientation, acts as
a load transfer medium between them, and protects them from environmental damages
due to elevated temperature or humidity, for example. Thus, even though the fibers pro-
vide reinforcement for the matrix, the latter also serves a number of useful functions in a
fiber-reinforced composite material.

The principal fibers in commercial use are various types of glass and carbon, as
well as Kevlar and those mentioned previously. All these fibers can be incorporated into a
matrix either in continuous lengths or in discontinuous (chopped) lengths. The matrix
material may be a polymer, a metal, or a ceramic. Various chemical combinations, com-
positions, and microstructural arrangements are possible in each matrix category.

The most common form in which fiber-reinforced composites are used in structural
applications is called a laminate. Laminates are obtained by stacking a number of thin
layers of fibers and matrix and consolidating them into the desired thickness. Fiber orien-
tation in each layer, as well as the stacking sequence of various layers, can be controlled
to generate a wide range of physical and mechanical properties for the composite lami-
nate.

1.1.1 Advanced Composites

Whereas the high properties of the fibers are in part a result of their being in fiber form,
as fibers they are not useful from a practical point of view. The key to taking advantage
of their uniquely high properties is to embed them in a surrounding matrix of another ma-
terial. The matrix acts as a support for the fibers, transports applied loads to the fibers,
and is capable of being formed into useful structural shapes. The right kind of matrix can
also provide ductility and toughness properties that the much more brittle fibers do not
possess. The term advanced composites is used to differentiate those with high-perfor-
mance characteristics, generally strength and stiffness, from the simpler forms like rein-
forced plastics.



Sec. 1.2 Composites and Their History 3

Historically, the term advanced composites has been taken to mean “high-perfor-
mance” composites. Many believe that this definition is far too restrictive and eliminates
many of the applications and materials with the most potential for future growth. The de-
velopment of any composite requires balancing many factors, including performance,
fabrication speed, and total cost. With high-performance materials, the desire for im-
proved properties is the dominant requirement. For many applications, however, better
performance, although desirable, is not the primary need. In fact, materials may already
be available with properties that meet or even exceed the performance requirements. In-
stead, the problem is to produce parts at sufficient speeds and low enough costs to obtain
them cost-effectively. For lack of a better term, such composites can be called cost-per-
formance materials.

Processing methods such as liquid molding (resin transfer molding and structural
reaction injection molding), pressure molding, filament winding and tow placement, ther-
mal forming, and pultrusion offer the most potential for reduced cost and increased speed
and will be discussed in Volume II. Industry representatives believe that they must har-
ness the chemical and physical changes that occur during fabrication to the extent that is
required for the processes to be optimized and controlled. Consequently, processing sci-
ence and on-line process control are key issues for the future.

1.2 COMPOSITES AND THEIR HISTORY

Modern structural composites, frequently referred to as advanced composites, are blends
of two or more materials, one of which is composed of stiff, long fibers and, for poly-
meric composites, a resinous binder or matrix that holds the fibers in place. The fiber is
strong and stiff relative to the matrix, and generally it is orthotropic; that is, it has differ-
ent properties in two different directions. For advanced structural composites, the fiber is
long, with a length-to-diameter ratio of over 100. The strength and stiffness of the fiber
are much greater, perhaps multiples of those of the matrix material. When the fiber and
the matrix are joined to form a composite, they both retain their individual identities and
both influence the composite’s final properties directly. The resulting composite consists
of layers, or laminas, of fibers and matrix (Figure 1.1) stacked in such a way as to achieve
the desired properties in one or more directions.

Modern composite materials evolved from the simplest mixtures of two or more
materials to obtain a property that was not there before. The Bible mentions the combin-
ing of straw with mud to make bricks. The three key historical steps leading to modern
composites were

1. The commercial availability of fiberglass filaments in 1935. This work led to the
main commercial use of fiber-reinforced plastics (FRP) in the construction of air-
craft radomes in the United States beginning in about 1942. Eventually, the right
reinforcement and the right resin at the right price saw the production of fiber-rein-
forced plastic translucent sheet in 1949, followed rapidly in the early 1950s by de-
velopments in fiber-reinforced plastic boat hulls, car bodies, and truck cabs.

2. The development of strong aramid, glass, and carbon fibers in the late 1960s and
early 1970s. These developments parallel the development of resins dating back to



