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Preface

To most outsiders, modern mathematics is unknown territory. Its
borders are protected by dense thickets of technical terms; its
landscapes are a mass of indecipherable equations and incom-
prehensible concepts. Few realize that the world of modern math-
ematics is rich with vivid images and provocative ideas.

Ivars PETERSON, The Mathematical Tourist

Excursions in Modern Mathematics is, as we hope the name might sug-
gest, a collection of “‘trips’’ into that vast and alien frontier that many
people perceive mathematics to be. While the purpose of this book is
quite conventional — it is intended to serve as a textbook for a college-
level liberal arts mathematics course — its contents are not. We have
made a concerted effort to introduce the reader to a view of mathematics
entirely different from the traditional algebra-geometry-trigonometry-
finite math curriculum which so many people have learned to dread, fear,
and occasionally abhor. The notion that general education mathematics
must be dull, unrelated to the real world, highly technical, and deal mostly
with concepts that are historically ancient is totally unfounded.

The ‘‘excursions’’ in this book represent a collection of topics chosen
to meet a few simple criteria.

B Applicability. The connection between the mathematics pre-
sented here and down-to-earth, concrete real-life problems is direct
and immediate. The often heard question, ‘*What is this stuff good
for?’’ is a legitimate one and deserves to be met head on. The often
heard answer, ‘“Well, you need to learn the material in Math 101
so that you can understand Math 102 which you will need to know
if you plan to take Math 201 which will teach you the real appli-
cations,’’ is less than persuasive and in many cases reinforces stu-
dents’ convictions that mathematics is remote, labyrinthine, and
ultimately useless to them.
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B Accessibility. Sophisticated mathematical topics need not always
be highly technical and built on layers of concepts. (Most of us are
painfully familiar with the experience of missing or misunderstand-
ing a concept in the middle of a math course and consequently
having trouble with the rest of the course material.) In general the
choice of topics is such that a heavy mathematical infrastructure
is not needed. We have found Intermediate Algebra to be a suf-
ficient prerequisite. In the few instances in which more advanced
concepts are unavoidable we have endeavored to provide enough
background to make the material self-contained. A word of caution
— this does not mean that the material is easy! In mathematics,
as in many other walks of life, simple and straightforward is not
synonymous with easy and superficial.

B Age. Much of the mathematics in this book has been discovered
in this century, some as recently as 20 years ago. Modern mathe-
matical discoveries do not have to be only within the grasp of
experts.

M Aesthetics. The notion that there is such a thing as beauty in math-
ematics is surprising to most casual observers. There is an im-
portant aesthetic component in mathematics and, just as in art and
music (which mathematics very much resembles), it often surfaces
in the simplest ideas. A fundamental objective of this book is to
develop an appreciation for the aesthetic elements of mathematics.
It is not necessary that the reader love everything in the book —
it is sufficient that he or she find one topic about which they can
say, “‘I really enjoyed learning this stuff!”” We believe that anyone
coming in with an open mind almost certainly will.

EmmmmmmST— The material in the book is divided into four independent parts. Each of
OUTLINE these parts in turn contains four chapters dealing with interrelated topics.

B PartI (Chapters | through4). The Mathematics of Social Choice.
This part deals with mathematical applications in social science.
How do groups make decisions? How are elections decided? How
can power be measured? When there are competing interests
among members of a group, how are conflicts resolved in a fair
and equitable way?

B Part II (Chapters 5 through 8). Management Science.
This part deals with methods for solving problems involving the
organization and management of complex activities — that is, ac-
tivities involving either a large number of steps and/or a large num-
ber of variables (building a skyscraper, putting a person on the
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moon, organizing a banquet, scheduling classrooms at a big uni-
versity, etc.). Efficiency is the name of the game in all these prob-
lems. Some limited or precious resource (time, money, raw ma-
terials) must be managed in such a way that waste is minimized.
We deal with problems of this type (consciously or unconsciously)
every day of our lives.

B Part III (Chapters 9 through 12). Growth and Symmetry.
This part deals with nontraditional geometric ideas. What do sun-
flowers and seashells have in common? How do populations grow?
What are the symmetries of a pattern? What is the geometry of
natural (as opposed to artificial) shapes? What kind of symmetry
lies hidden in a cloud?

B Part IV (Chapters 13 through 16). Statistics.
In one way or another, statistics affects all of our lives. Govern-
ment policy, insurance rates, our health, and our diet are all gov-
erned by statistical laws. This part deals with some of the basic
elements of statistics. How are statistical data collected? How are
they summarized so that they say something intelligible? How are
they interpreted? What are the patterns of statistical data?

We have endeavored to write a book that is flexible enough to appeal to
a wide range of readers in a variety of settings. The exercises, in partic-
ular, have been designed to convey the depth of the subject matter by
addressing a broad spectrum of levels of difficulty — from the routine to
the challenging. For convenience we have classified them into three levels
of difficulty: Walking (these are straightforward applications of the con-
cepts discussed in the chapter, and it is intended that all readers be able
to do them); Jogging (these are exercises that are not difficult per se, but
require a little thinking on the part of the reader); and Running (these are
the really challenging exercises and are intended for those readers who
like a little challenge in life).

Because this course can be taught in a myriad of styles, we have included
material which will increase the text’s flexibility. Bibliography listings at
the end of every chapter can be used by students and instructors as a
source of additional readings which provide more indepth or tangentially
related information.

In addition, Prentice Hall and the New York Times are sponsoring ‘A
Contemporary View,”’ a program which will provide both students and
instructors with access to information which further illustrates the rele-
vance and currency of mathematics. Through this program, at the in-
structor’s request, each student will receive a supplement containing re-
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THE NEW YORK TIMES and PRENTICE HALL are sponsoring A
CONTEMPORARY VIEW: a program designed to enhance student
access to current information of relevance in the classroom.

PRENTIC)

Through this program, the core subject matter provided in the text
is supplemented by a collection of time-sensitive articles from one
of the world’s most distinguished newspapers, THE NEW YORK
TIMES. These articles demonstrate the vital, ongoing connection
between what is learned in the classroom and what is happening in
the world around us.

To enjoy the wealth of information of THE NEW YORK TIMES |
daily, a reduced subscription rate is available in deliverable areas. |
For information, call toll-free: 1-800-631-1222.

PRENTICE HALL and THE NEW YORK TIMES are¢ proud to co-
sponsor A CONTEMPORARY VIEW. We hope it will make the
reading of both textbooks and newspapers a more dynamic, involv-
ing process.
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PART | = THE MATHEMATICS OF SOCIAL CHOICE m——

Voting

Democracy is the worst

Sform of government Ih e P a radox es

except [for] all those

other forms that bave O f De m OC raq)

been tried from time
to time.
WinsTON CHURCHILL

We are often reminded that the right to vote, one of the fundamental
tenets of a democracy, is something that we should not take for granted.
Voting is the vehicle by which a democratic society makes decisions, and
the process by which the many and conflicting opinions of the individuals
are consolidated into the single choice of the group is what voting theory
is about. But why do we need a whole theory? It all sounds so simple.
There surely must be a reasonable and easy way for a democratic society
to make group decisions based on numbers, and we have every right to
expect that mathematics with all its tools and power will give us the
answer.

Mathematics does indeed provide the answer, but the answer is quite
surprising and far from simple: There is no consistent method by which
a democratic society can make a choice that is a/ways fair when that
choice must be made from among several (three or more) alternatives.
This remarkable fact, discovered by the mathematical economist Kenneth
Arrow in 1952, is known as Arrow’s impossibility theorem. In 1972, Arrow
received the Nobel Prize in Economics for his contributions to the mathe-
matical theory of social decision making.
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PREFERENCE
BALLOTS

AND PREFERENCE
SCHEDULES

The purpose of this chapter is to clarify the meaning and significance
of Arrow’s impossibility theorem and at the same time to discuss several
well-known methods of voting.

Our discussion for the entire chapter is centered around the following,
deceptively simple example.

D R T ) WS T

The MAC Election. An election is being held to choose the president
of the Math Anxiety Club (MAC). There are four candidates: Alisha,
Boris, Carmen, and Dave (A, B, C, and D for short). Each of the 37
members of the club is asked to submit a ballot indicating his or her first,
second, third, and fourth choices (ties are not allowed in individual bal-
lots). The 37 ballots submitted are shown in Fig. 1-1. Who should be
president? Why?

Ballot || Ballot || Ballot || Ballot || Ballot || Ballot || Ballot || Ballot || Ballot || Ballot
Ist A|llst B|[Ist Al|lst C||Ist B||lst C||Ist Al]lst D||1st Al|lst A
2nd B ({2nd D ([2nd B||{2nd B ||{2nd D ||{2nd B ||[2nd B||2nd C||2nd B ||2nd B
3rd C||3rd C||3rd C||3rd D||3rd C||[3rd D||[3rd C||3rd B||3rd C||3rd C
4th D||4th A[[4th D|[4th A||4th A||4th A[[4th D|[4th A||4th D||4th D

Ballot || Ballot || Ballot || Ballot || Ballot || Ballot || Ballot || Ballot || Ballot || Ballot
Ist C|fIst Af[lst C||1Ist Df|Ist C|flIst A||lst Df|Ist D||Ist C||Ist C
2nd B (|2nd B ||2nd B ||2nd C|[2nd B |[2nd B |[2nd C |[2nd C |[2nd B ||2nd B
3rd D||3rd C||3rd D||3rd B||3rd D||[3rd C||3rd B||3rd B||3rd D||3rd D
4th A(|4th D|[4th A||4th A||4h A||4th D|[4th A||[4th A||4th A||4th A

Ballot || Ballot || Ballot || Ballot || Ballot || Ballot || Ballot || Ballot || Ballot || Ballot
Ist A|llIst B||[lIst C||1Ist C||Ist D||Ist A||[lst D||1Ist C||Ist A||llst D
2nd B ||2nd D ||2nd B ||2nd B||2nd C||2nd B ||2nd C||2nd B ||2nd B ||2nd C
3rd C||3rd C||3rd D||3rd D||3rd B||3rd C||3rd B||3rd D||3rd C||3rd B
4th D||4th A|[[4th A |[4th A||4th A||4th D||4th A|[[4th A||[4th D||4h A

Ballot || Ballot || Ballot || Ballot || Ballot || Ballot || Ballot
Ist B || 1Ist Al|lst C||Ist A[|lIst Af|lst D[] 1Ist A
2nd D ||{2nd B ||2nd D||2nd B||2nd B ||2nd C||2nd B
3rd C||3rd C||3rd B||3rd C||3rd C||3rd B||3rd C
4th Af|4th D|[[4th A||4th D||4th D||4th A[[4th D

Figure 1-1
£l

Ballots such as the ones shown in Fig. 1-1 in which the voter is asked to
list all of the options in order of preference are called preference ballots.
A closer inspection of the 37 preference ballots in Fig. 1-1 shows that in
many instances individual voters voted exactly the same way. In fact,
the outcome of the election can be summarized in Fig. 1-2 and more
conveniently in the table that follows, which is called a preference schedule
for the election.
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Ballot
Ist C
2nd B
3rd D
4th A

Figure 1-3

Preference Ballots and Preference Schedules 3

=
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Ballot

T .
Ballot Ballot

Ballot
Ist A Ist C Ist B Ist C
2nd B 2nd B 2nd D 2nd D
3rd C 3rd D 3rd C 3rd B
4th D 4th A 4th A 4th A
14 10 8 4 1
Figure 1-2

Number of voters 14 10 8 4 |

Ist choice A C D B C

2nd choice B B C D D

3rd choice C D B C B

4th choice D A A A A

Before we take on the task of deciding who will be elected president of
the Math Anxiety Club, we need to clarify certain assumptions that we
will make about individual preferences. One of our basic assumptions is
that individual preferences are transitive: If a voter prefers X to Y and Y
to Z, then it is only reasonable to assume that the voter prefers X to Z.
It follows therefore that a ballot such as the one shown in Fig. 1-3 tells
us not only that this voter prefers C to B, B to D, and D to A, but also
implicitly that the voter prefers C to D, C to A, and B to A.

A second important assumption is that relative preferences are not
altered by the elimination of one or more candidates. In other words,
suppose that a voter prefers X to Y, Y to Z, and Z to W. If, for whatever
reason, Y drops out of the race, the other relative preferences remain
unaffected: The voter still prefers X to Z and Z to W.

While there are occasional situations in which these assumptions do
not hold,' they are by and large exceptions. In any voting system in which
voters act rationally, it is reasonable to expect that the above assumptions
will hold, and for the rest of this chapter we will pretty much take them
for granted.

! See, for example, the discussion of how the 1996 Summer Olympics were awarded to
Atlanta in Appendix 2 at the end of this chapter.



