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In this book, which arose from an MSRI research workshop cosponspored
by the Clay Mathematical Institute, leading experts give an overview of sev-
eral areas of dynamical systems that have recently experienced substantial
progress.

In symplectic geometry, a fast-growing field having its roots in classical
mechanics, Cieliebak, Hofer, Latschev and Schlenk give a definitive survey
of quantitative techniques and symplectic capacities, which have become a
central research tool. Fisher’s survey on local rigidity of group actions is a
broad and up-to-date account of a flourishing subject built on the fact that for
actions of noncyclic groups, topological conjugacy commonly implies smooth
conjugacy.

Other articles by Eigen, Feres, Kochergin, Krieger, Navarro, Pinto, Prasad,
Rand and Robinson cover subjects in hyperbolic, parabolic and symbolic dy-
namics as well as ergodic theory. Among the specific areas of interest are
random walks and billiards, diffeomorphisms and flows on surfaces, amenabil-
ity and tilings.

The articles are complemented by a fifty-page commented problem list,
compiled by the editor with the help of numerous specialists. Several sections
of this list focus on problems beyond the areas covered in the surveys, and all
are sure to inspire and guide further research.
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Foreword

This volume owes its existence to the Clay Mathematics Institute / Mathemat-
ical Sciences Research Institute Workshop on “Recent Progress in Dynamics”,
held at the Mathematical Sciences Research Institute for a week in late Septem-
ber to early October 2004. This is not a proceedings volume, but most authors
were participants of the workshop, and the two lead surveys reflect a good deal
of what David Fisher and Helmut Hofer presented during their workshop talks.

The workshop represented a broad array of dynamical systems, not least in
order to reflect the breadth of taste exhibited by Anatole Katok, whose sixtieth
birthday was observed during the workshop. This was possible because we
were able to invite a great number of participants from near and far, and the
essential ingredient in making this possible was the generous financial support
from the Clay Mathematics Institute and the Mathematical Sciences Research
Institute (which is in turn supported by the National Science Foundation), as well
as from the Pennsylvania State University and Tufts University. As the host
of the workshop, the Mathematical Sciences Research Institute also provided
administrative support for the organizers and participants. It is a pleasure to
acknowledge this support.

Funding alone does not produce a successful workshop, and I want to thank
my fellow workshop organizers Michael Brin, Gregory Margulis, Yakov Pesin,
Peter Sarnak, Klaus Schmidt, Ralf Spatzier and Robert Zimmer. Foremost
among these was Yakov Pesin, whose involvement was constant and most valu-
able. And a successful workshop does not by itself lead to written works of
interest, so I wish to thank the authors of the articles in this volume for their
contributions. Thanks also go to Silvio Levy for his smooth handling of the
entire production process, and to Kathleen Hasselblatt for her support.

The aim of the workshop and this volume is to impact the development of
dynamical systems, and to that end we paid some attention to making it pos-
sible for younger participants to attend the workshop, and the surveys in this
volume may attract young mathematicians to those subject areas. The Math-
ematical Sciences Research Institute adds to the impact of the event by main-
taining streaming video of the lectures given at the workshop, which enables
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everyone to view these lectures (see http://www.msri.org/calendar/workshops/
WorkshopInfo/267/show workshop). Finally, a problem list in this volume is
hoped to inspire research into subjects that posed challenges at the time of the
workshop. I hope that the readers will find this volume interesting, useful and
inspiring.

I am writing these lines on the sixty-second birthday of Anatole Katok and
wish to dedicate this volume to him.

Boris Hasselblatt
Somerville (MA), August 2006
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Quantitative symplectic geometry

KAI CIELIEBAK, HELMUT HOFER,
JANKO LATSCHEV, AND FELIX SCHLENK

Dedicated to Anatole Katok on the occasion of his sixtieth birthday

A symplectic manifold (M, w) is a smooth manifold M endowed with a
nondegenerate and closed 2-form w. By Darboux’s Theorem such a manifold
looks locally like an open set in some R?” = C" with the standard symplectic
form

n
wy = Z dxj Ndyj, (0-1)
j=1

and so symplectic manifolds have no local invariants. This is in sharp contrast to
Riemannian manifolds, for which the Riemannian metric admits various curva-
ture invariants. Symplectic manifolds do however admit many global numerical
invariants, and prominent among them are the so-called symplectic capacities.
Symplectic capacities were introduced in 1990 by I. Ekeland and H. Hofer [18;
19] (although the first capacity was in fact constructed by M. Gromov [39]).
Since then, lots of new capacities have been defined [16; 29; 31; 43; 48; 58;
59; 88; 97] and they were further studied in [1; 2; 8; 9; 25; 20; 27; 30; 34;
36; 37, 40; 41, 42; 45; 47, 49; 51; 55; 56; 57; 60; 61; 62; 63; 65; 71, 72;
73; 86; 87; 89; 90; 92; 95; 96]. Surveys on symplectic capacities are [44; 49;
54; 66; 95]. Ditferent capacities are defined in different ways, and so relations
between capacities often lead to surprising relations between different aspects
of symplectic geometry and Hamiltonian dynamics. This is illustrated in Sec-
tion 2, where we discuss some examples of symplectic capacities and describe
a few consequences of their existence. In Section 3 we present an attempt to

Cieliebak’s research was partially supported by the DFG grant Ci 45/2-1. Hofer’s research was partially
supported by the NSF Grant DMS-0102298. Latschev held a position financed by the DFG grant Mo 843/2-1.
Schlenk held a position financed by the DFG grant Schw 892/2-1.
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2 K. CIELIEBAK, H. HOFER, J. LATSCHEV, AND F. SCHLENK

better understand the space of all symplectic capacities, and discuss some further
general properties of symplectic capacities. In Section 4, we describe several
new relations between certain symplectic capacities on ellipsoids and polydiscs.
Throughout the discussion we mention many open problems.

As illustrated below, many of the quantitative aspects of symplectic geometry
can be formulated in terms of symplectic capacities. Of course there are other
numerical invariants of symplectic manifolds which could be included in a dis-
cussion of quantitative symplectic geometry, such as the invariants derived from
Hofer’s bi-invariant metric on the group of Hamiltonian diffeomorphisms, [43;
79; 82], or Gromov—Witten invariants. Their relation to symplectic capacities is
not well understood, and we will not discuss them here.

We start out with a brief description of some relations of symplectic geometry
to neighboring fields.

1. Symplectic geometry and its neighbors

Symplectic geometry is a rather new and vigorously developing mathematical
discipline. The “symplectic explosion” is described in [21]. Examples of sym-
plectic manifolds are open subsets of (R>” ,wg), the torus R?" /72" endowed
with the induced symplectic form, surfaces equipped with an area form, Kéhler
manifolds like complex projective space CP” endowed with their Kahler form,
and cotangent bundles with their canonical symplectic form. Many more exam-
ples are obtained by taking products and through more elaborate constructions,
such as the symplectic blow-up operation. A diffeomorphism ¢ on a symplectic
manifold (M, w) is called symplectic or a symplectomorphism if ¢*w = w.

A fascinating feature of symplectic geometry is that it lies at the crossroad of
many other mathematical disciplines. In this section we mention a few examples
of such interactions.

Hamiltonian dynamics. Symplectic geometry originated in Hamiltonian dy-
namics, which originated in celestial mechanics. A time-dependent Hamiltonian
function on a symplectic manifold (M, w) is a smooth function H:Rx M — R.
Since w is nondegenerate, the equation

w(Xg.-) = dH(-)

defines a time-dependent smooth vector field Xz on M. Under suitable assump-
tion on H, this vector field generates a family of diffeomorphisms (p;, called
the Hamiltonian flow of H. As is easy to see, each map ¢}, is symplectic. A
Hamiltonian diffeomorphism ¢ on M 1is a diffeomorphism of the form ¢ ,‘{
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Symplectic geometry is the geometry underlying Hamiltonian systems. It
turns out that this geometric approach to Hamiltonian systems is very fruitful.
Explicit examples are discussed in Section 2 below.

Volume geometry. A volume form £2 on a manifold M is a top-dimensional
nowhere vanishing differential form, and a diffeomorphism ¢ of M is volume
preserving if ¢*§2 = §2. Ergodic theory studies the properties of volume pre-
serving mappings. Its findings apply to symplectic mappings. Indeed, since a
symplectic form w is nondegenerate, w” is a volume form, which is preserved
under symplectomorphisms. In dimension 2 a symplectic form is just a volume
form, so that a symplectic mapping is just a volume preserving mapping. In
dimensions 2n > 4, however, symplectic mappings are much more special.
A geometric example for this is Gromov’s Nonsqueezing Theorem stated in
Section 2.2 and a dynamical example is the (partly solved) Arnol’d conjecture
stating that Hamiltonian diffeomorphisms of closed symplectic manifolds have
at least as many fixed points as smooth functions have critical points. For another
link between ergodic theory and symplectic geometry see [81].

Contact geometry. Contact geometry originated in geometrical optics. A con-
tact manifold (P, «) is a (2n — 1)-dimensional manifold P endowed with a
1-form « such that o A (de)”™! is a volume form on P. The vector field X on
P defined by da(X,-) =0and a(X) = 1 generates the so-called Reeb flow. The
restriction of a time-independent Hamiltonian system to an energy surface can
sometimes be realized as the Reeb flow on a contact manifold. Contact mani-
folds also arise naturally as boundaries of symplectic manifolds. One can study
a contact manifold ( P, o) by symplectic means by looking at its symplectization
(P xR.d(e'a)), see e.g. [46; 22].

Algebraic geometry. A special class of symplectic manifolds are Kéhler mani-
folds. Such manifolds (and, more generally, complex manifolds) can be studied
by looking at holomorphic curves in them. M. Gromov [39] observed that some
of the tools used in the Kéhler context can be adapted for the study of symplectic
manifolds. One part of his pioneering work has grown into what is now called
Gromov—Witten theory, see e.g. [70] for an introduction.

Many other techniques and constructions from complex geometry are useful
in symplectic geometry. For example, there is a symplectic version of blowing-
up, which is intimately related to the symplectic packing problem, see [64; 68]
and 4.1.2 below. Another example is Donaldson’s construction of symplectic
submanifolds [17]. Conversely, symplectic techniques proved useful for study-
ing problems in algebraic geometry such as Nagata’s conjecture [5; 6; 68] and
degenerations of algebraic varieties [7].
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Riemannian and spectral geometry. Recall that the differentiable structure of
a smooth manifold M gives rise to a canonical symplectic form on its cotangent
bundle 7* M . Giving a Riemannian metric g on M is equivalent to prescribing
its unit cosphere bundle S;M C T*M, and the restriction of the canonical
1-form from T*M gives S* M the structure of a contact manifold. The Reeb
flow on S;‘M is the geodesic flow (free particle motion).

In a somewhat different direction, each symplectic form @ on some manifold
M distinguishes the class of Riemannian metrics which are of the form w(J-, -)
for some almost complex structure J.

These (and other) connections between symplectic and Riemannian geometry
are by no means completely explored, and we believe there is still plenty to be
discovered here. Here are some examples of known results relating Riemannian
and symplectic aspects of geometry.

Lagrangian submanifolds. A middle-dimensional submanifold L of (M, w)
is called Lagrangian if @ vanishes on T'L.

(i) Volume. Endow complex projective space CP” with the usual Kahler
metric and the usual Kidhler form. The volume of submanifolds is taken with
respect to this Riemannian metric. According to a result of Givental-Kleiner—
Oh, the standard RP” in CP" has minimal volume among all its Hamiltonian
deformations [74]. A partial result for the Clifford torus in CP” can be found in
[38]. The torus S! x S! € §2 x S? formed by the equators is also volume min-
imizing among its Hamiltonian deformations, [50]. If L is a closed Lagrangian
submanifold of (R"", wo), there exists according to [98] a constant C depending
on L such that

vol (pg (L)) = C  for all Hamiltonian deformations of L. (1-1)

(ii) Mean curvature. The mean curvature form of a Lagrangian submanifold
L in a Kdhler-Einstein manifold can be expressed through symplectic invariants
of L, see [15].

The first eigenvalue of the Laplacian. Symplectic methods can be used to
estimate the first eigenvalue of the Laplace operator on functions for certain
Riemannian manifolds [80].

Short billiard trajectories. Consider a bounded domain U C R" with smooth
boundary. There exists a periodic billiard trajectory on U of length / with

I" < Cyvol(U) (1-2)

where C,, is an explicit constant depending only on n, see [98; 30].
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2. Examples of symplectic capacities

In this section we give the formal definition of symplectic capacities, and
discuss a number of examples along with sample applications.

2.1. Definition. Denote by Symp®" the category of all symplectic manifolds of
dimension 2, with symplectic embeddings as morphisms. A symplectic cate-
gory is a subcategory € of Symp®" such that (M, w) € 6 implies (M, aw) € 6
for all a > 0.

CONVENTION. We will use the symbol — to denote symplectic embeddings and
— to denote morphisms in the category € (which may be more restrictive).

Let B2"(r?) be the open ball of radius r in R?” and Z?"(r?) = B%(r2) x R?>"—2
the open cylinder (the reason for this notation will become apparent below). Un-
less stated otherwise, open subsets of R?” are always equipped with the canon-
ical symplectic form wy = Z;’=1 dy;j A dxj. We will suppress the dimension
2n when it is clear from the context and abbreviate

B := B*"(1), Z = Z*().

Now let € C Symp®" be a symplectic category containing the ball B and the
cylinder Z. A symplectic capacity on € is a covariant functor ¢ from % to the
category ([0, oo], <) (with @ < b as morphisms) satisfying

(MONOTONICITY): ¢(M,w) <c(M’,®") if there exists a morphism (M, w) —
(M', '),

(CONFORMALITY): ¢(M,axw) =ac(M,w) for a > 0;

(NONTRIVIALITY): 0 <¢(B) and ¢(Z) < oco.

Note that the (Monotonicity) axiom just states the functoriality of ¢. A sym-
plectic capacity is said to be normalized if

(NORMALIZATION): ¢(B) = 1.

As a frequent example we will use the set Op®" of open subsets in R?". We make
it into a symplectic category by identifying (U, a2wq) with the symplectomor-
phic manifold (aU, wg) for U C R?>" and o > 0. We agree that the morphisms
in this category shall be symplectic embeddings induced by global symplec-
tomorphisms of R?”. With this identification, the (Conformality) axiom above
takes the form

(CONFORMALITY)": ¢(aU) = a?¢(U) for U € Op*", a > 0.
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2.2. Gromov radius. In view of Darboux’s Theorem one can associate with
each symplectic manifold (M, ) the numerical invariant

cg(M.w) := sup{a>0| B (a) — (M, w)}

called the Gromov radius of (M.w), [39]. It measures the symplectic size
of (M,w) in a geometric way, and is reminiscent of the injectivity radius of
a Riemannian manifold. Note that it clearly satisfies the (Monotonicity) and
(Conformality) axioms for a symplectic capacity. It is equally obvious that
cp(B)=1.

If M is 2-dimensional and connected, then 7cg(M,w) = fM w, 1.e. cg is
proportional to the volume of M, see [89]. The following theorem from Gro-
mov’s seminal paper [39] implies that in higher dimensions the Gromov radius
is an invariant very different from the volume.

NONSQUEEZING THEOREM (GROMOV, 1985). The cylinder Z € Symp® sat-
isfies cg(Z) = 1.

Therefore the Gromov radius is a normalized symplectic capacity on Symp*".
Gromov originally obtained this result by studying properties of moduli spaces
of pseudo-holomorphic curves in symplectic manifolds.

It is important to realize that the existence of at least one capacity ¢ with
¢(B) = c¢(Z) also implies the Nonsqueezing Theorem. We will see below
that each of the other important techniques in symplectic geometry (such as
variational methods and the global theory of generating functions) gave rise
to the construction of such a capacity, and hence an independent proof of this
fundamental result.

It was noted in [ 18] that the following result, originally established by Eliash-
berg and by Gromov using different methods, is also an easy consequence of
the existence of a symplectic capacity.

THEOREM (ELIASHBERG, GROMOV). The group of symplectomorphisms of a
symplectic manifold (M, w) is closed for the compact-open C°-topology in the
group of all diffeomorphisms of M .

2.3. Symplectic capacities via Hamiltonian systems. The next four examples
of symplectic capacities are constructed via Hamiltonian systems. A crucial role
“in the definition or the construction of these capacities is played by the action
functional of classical mechanics. For simplicity, we assume that (M, w) =
(R?*", wp). Given a Hamiltonian function H:S' x R*" — R which is periodic
in the time-variable € S! = R/Z and which generates a global flow go;l, the
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action functional on the loop space C*®°(S!, R?") is defined as

1
dgly) = /ydx—/o H(t,y(t))dt. (2-1)
Y

Its critical points are exactly the 1-periodic orbits of go}i. Since the action func-
tional is neither bounded from above nor from below, critical points are saddle
points. In his pioneering work [83; 84], P. Rabinowitz designed special minimax
principles adapted to the hyperbolic structure of the action functional to find such
critical points. We give a heuristic argument why this works. Consider the space
of loops

E = HI/Z(SI.IRZ") — {:ELZ (SI:RZH)

S Ikl 2 <oo}

kez

where z = e2mktJ - , zx € R?" is the Fourier series of z and J is the
kez k> <k

standard complex structure of R?” 2 C”. The space E is a Hilbert space with
inner product
(z.w) = (z0.wo) +27 ) k] (zk. wi),
kez
and there is an orthogonal splitting E = E- @ E°@ Et, z =27 + 204 =7,
into the spaces of z € E having nonzero Fourier coefficients z; € R*” only for

k <0,k =0, k > 0. The action functional sdg: C*®(S!, R*") — R extends to
E as

Lot )[2 _1-.—2 !
n ) = (L P -40R) - [ Hezoparn @)

Notice now the hyperbolic structure of the first term {o(x), and that the second
term is of lower order. Some of the critical points z(¢) = const of 4y should
thus persist for H # 0.

2.3.1. Ekeland-Hofer capacities. The first construction of symplectic capac-
ities via Hamiltonian systems was carried out by Ekeland and Hofer [18; 19].
To give the heuristics, we consider a bounded domain U C R?” with smooth
boundary dU. A closed characteristic v on U is an embedded circle in U
tangent to the characteristic line bundle

Pu = {(x,8) e TIU | wo(E,n) =0 forall ne T,oU}.

If QU is represented as a regular energy surface {x € R2" | H(x) = const} of a
smooth function H on R?”, then the Hamiltonian vector field X restricted to
aU is a section of £y, and so the traces of the periodic orbits of Xz on U are
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the closed characteristics on dU . The action of a closed characteristic y on U
is defined as A(y) = ’fy ¥ d.x". The set

YWU) ={kd(y)|k=1,2,...; yis aclosed characteristic on 0U }

is called the action spectrum of U. Now one would like to associate with U
suitable elements of X' (U). Without further assumptions on U, however, the set
2 (U) may be empty (see [32; 33; 35]), and there is no obvious way to achieve
(Monotonicity). To salvage this naive idea, Ekeland and Hofer considered for
each bounded open subset U of R2” the space F(U ) of time-independent Hamil-
tonian functions H:R?" — [0, oo) satisfying

e H =0 on some open neighbourhood of U, and
e H(z) =a|z|? for |z| large, where a > 7, a ¢ Nr.

Notice that the circle S! acts on the Hilbert space E by time-shift x(¢)
x(t+6) for 6 € S = R/Z. The special form of H € %(U) guarantees that for
each k € N the equivariant minimax value

CHk ‘= inf{su[g Ag(y) | € C E is S'-equivariant and ind(§) > k}
yE

is a critical value of the action functional (2-2). Here, ind(£€) denotes a suitable
Fadell-Rabinowitz index [26; 19] of the intersection £ N ST of £ with the unit
sphere ST C E™. The k-th Ekeland—Hofer capacity c,EH on the symplectic
category Op?" is now defined as

il (U):=inf{cy s | He FU)}
if U C R?" is bounded and as
g (U) :=sup {cg (V) | V C U bounded}

in general. It turns out that these numbers are indeed symplectic capacities.
Moreover, they realize the naive idea of picking out suitable elements of X' (U)
for many U: A bounded open subset U of R?" is said to be of restricted con-
tact type if its boundary dU is smooth and if there exists a vector field v on
R2" which is transverse to dU and whose Lie derivative satisfies L,wo = wy.
Examples are bounded star-shaped domains with smooth boundary.

PROPOSITION (EKELAND AND HOFER, 1990). If U is of restricted contact
type, then ('EH(U) € Y (U) for each k € N.



