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Dedication

This book is dedicated to the founders of Planetary Science:
Rupert Wildt, Gerard P. Kuiper, and Harold C. Urey,
whose thoughts roamed the Solar System before spacecraft did.



At its original conception, this book was based on
the structure, scope, and philosophy of a sophomore/
junior level course taught at M.I.T. by the author and
Prof. Irwin 1. Shapiro from 1969 to 1982. Although the
content of that course varied greatly over the years in
response to the vast new knowledge of the Solar System
provided by modern Earth-based and spacecraft-based
experimental techniques, the philosophy and level of
presentation remained very much the same. The material
was brought up to date in 1994 for publication in 1995,
and again updated with many corrections and additions
for a revised edition in 1997. This second edition was
prepared in 2002 to take advantage of the many recent
advances in the study of Mars and small Solar System
bodies, the discovery and study of more than 100 extra-
solar planets, and more mature analysis of the Galileo
Orbiter and probe data on Jupiter and its large satellites.

The timing of the various editions of this book has
been influenced by the erratic history of planetary
exploration. During the 12 years of 1964-1973 there were
87 launches of lunar and planetary spacecraft, of which
54 were involved in the race to the Moon. In the 29 years
since the end of 1973, up to the date of this edition in
2002, there have been only 36 additional launches. Both
the United States and the Soviet Union experienced
prolonged gaps in their lunar and planetary exploration
programs: the American gap in lunar exploration
extended from Explorer 49 in 1973 to the launch of
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Clementine in 1994, and the Russian hiatus in lunar
missions has stretched from Luna 24 in 1976 to the
present. American exploration of Mars was suspended
from the time of the Viking missions in 1975 until the
launch of Mars Observer in 1992, and Soviet exploration
of Mars, suspended after Mars 7 in 1975, did not resume
until the launch of the two ill-fated Phobos spacecraft in
1988. Soviet missions to Venus ceased in 1984.

From 1982 to 1986 there was a gap in the acquisition
of planetary data by American spacecraft. This drought
was interrupted in 1986 by the Voyager 2 Uranus flyby
and by five spacecraft encounters with Halley’s comet
(two Soviet, two Japanese, and one from the European
Space Agency), but the drought again resumed until it
was broken by the Voyager 2 Neptune encounter and the
Soviet Phobos missions in 1989 and the Magellan mis-
sion to Venus in 1990. The launch of the Galileo Orbiter
and probe to Jupiter, long scheduled for 1986, was
severely delayed by the explosion of the space shuttle
orbiter Challenger, the resulting 2-year grounding of the
entire shuttle fleet, and the subsequent cancellation of
the high-energy Centaur G’ upper stage intended for
launching heavy planetary missions from the shuttle.
The European-American Ulysses solar mission, which
was not instrumented for intensive planetary studies,
flew by Jupiter in February 1992, returning only data
on its magnetic and charged-particle environment. The
arrival of Galileo at Jupiter, the Galileo Probe entry into
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Jupiter’s atmosphere in December 1995, the lengthy
Galileo Orbiter survey of the Jovian system, and the
resumption of small Mars missions (Pathfinder, Mars
Global Surveyor, etc.) by the United States have com-
bined with a flood of space-based (Galileo, Near-Earth
Asteroid Rendezvous) and Earth-based observations of
near-Earth asteroids and Belt asteroids, and intensive
Earth-based study of comets, Centaurs, small icy satel-
lites, and trans-Neptunian objects and the highly suc-
cessful search for dark companions of nearby stars to
reinvigorate the planetary sciences. This new resurgence
of planetary exploration, with little prospect of Russian
participation, has been helped by the active involvement
of Japan’s NASDA and the European Space Agency in
planning and flying unmanned missions to the Moon,
Mars, and Venus. The infusion of new data resulting
from these several programs creates the necessity of
revising this book

In this book, as in that Planetary Physics and Chem-
istry course in which it was first conceived, I shall assume
that the reader has completed 1 year of university-level
mathematics, chemistry, and physics. The book is aimed
at several distinct audiences: first, the upper-division
science major who wants an up-to-date appreciation of
the present state of the planetary sciences for “cultural”
purposes; second, the first-year graduate student from
any of several undergraduate disciplines who intends to
take graduate courses in specialized areas of planetary
sciences; and third, the practicing Ph.D. scientist with
training in physics, chemistry, geology, astronomy,
meteorology, biology, etc., who has a highly specialized
knowledge of some portion of this material, but has not
had the opportunity to study the broad context within
which that specialty might be applied to current prob-
lems in this field.

This volume does not closely approximate the level
and scope of any previous book. The most familiar texts
on the planetary sciences are Exploration of the Solar
System, by William J. Kaufmann, III (Macmillan, New
York, 1978 and later), a nonmathematical survey of the
history of planetary exploration; Moons and Planets, by
William K. Hartmann (Wadsworth, Belmont, Califor-
nia, 1972; 1983; 1993), a scientific tour of the Solar
System with high-school-level mathematical content;
and Meteorites and the Origin of Planets, by John A.
Wood (McGraw-Hill, New York, 1968), a fine qualita-
tive introduction that is similarly sparing of mathematics
and physics. Several other nonmathematical texts are
available, including Introduction to the Solar System,
by Jeffrey K. Wagner (Saunders, Philadelphia, 1991),
Exploring the Planets, by W. Kenneth Hamblin and Eric
H. Christiansen (Macmillan, New York, 1990), The
Space-Age Solar System, by Joseph F. Baugher (J. Wiley,
New York, 1988), and The Planetary System, by
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planetary scientists David Morrison and Tobias Owen
(Addison-Wesley, Reading, Massachusetts, 1988).

Another book, comparable in mathematical level to
the present text, is Worlds Apart, by Guy J. Consolmagno,
S. J., and Martha W. Schaefer (Prentice Hall, Engle-
wood Cliffs, New Jersey, 1994). Though much less
detailed than the present work, it is well written and
appropriate for a one-semester introductory course on
planetary science for science majors. The scope of the
present text is broader, and the level higher, than any of
these books.

As presently structured, this book is a broad sur-
vey of the Solar System suitable for reference use or as
background reading for any course in Solar System
science. The text may for convenience be divided into
three parts. The first of these parts contains Chapter I
(Introduction), Chapter II (Astronomical Perspective),
Chapter III (General Description of the Solar System),
and Chapter IV (The Sun and the Solar Nebula). This
first part could be called “General Properties and
Environment of our Planetary System.” It is roughly
equivalent to a brief introductory astronomy book
emphasizing the concerns of planetary scientists rather
than stellar or galactic astronomers. The second part
contains Chapter V (The Major Planets), Chapter VI
(Pluto and the Icy Satellites of the Outer Planets),
Chapter VII (Comets and Meteors), and Chapter VIII
(Meteorites and Asteroids), and might fairly be entitled
“The Solar System beyond Mars.” The third and final
part comprises Chapter IX (The Airless Rocky Bodies:
Io, Phobos, Deimos, the Moon, and Mercury), Chapter X
(The Terrestrial Planets: Mars, Venus, and Earth),
Chapter XI (Planets and Life around Other Stars),
and Chapter XII (Future Prospects). This part could
be called “The Inner Solar System.”

Using this volume as a textbook, a planetary
sciences course taught in a trimester setting could use
one part each term. In a two-semester program, either
an inner solar system emphasis course (parts 1 and 3)
or an outer solar system course (parts 1 and 2) could
be taught. The most ambitious and intensive program,
and the most similar to the way the course was struc-
tured at M.L.T., would be to teach parts 2 and 3 in
two semesters, reserving most of the material in part 1
for use as reference reading rather than as lecture
material.

This book is written in appreciation of the
approximately 350 students who took the course at
M.LT., and who unanimously and vocally deplored
the lack of a textbook for it. These students included
both Consolmagno and Schaefer as cited above.
I extend my particular thanks to Irwin Shapiro for his
many years of cheerful, devoted, always stimulating,
and sometimes hilarious collaboration on our course,
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and for his generous offer to allow me to write “his”
half of the text as well as “mine.” I am also pleased to
acknowledge the helpful comments and suggestions of
dozens of my colleagues, but with special thanks
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reserved for Jeremy Tatum of the University of Vic-
toria, whose detailed comments and physicist’s per-
spective have been invaluable in the preparation of
this second edition.
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I. Introduction

Nature and Scope of the Planetary Sciences

When asked in an interview to give his viewpoint on
the frontiers of science, the famous physicist Victor
Weisskopf commented that the most exciting prospects
fell into two categories, the frontier of size and the
frontier of complexity. A host of examples come to
mind: cosmology, particle physics, and quantum field
theory are clearly examples of the extremes of scale,
and clearly among the most exciting frontiers of science.
Biology, ecology, and planetary sciences are equally
good examples-of the frontier of complexity.

When we peruse the essential literature of planetary
science, we find that we must, over and over again, come
face to face with these same extremes. First, we are
concerned with the origin and nuclear and chemical
evolution of matter, from its earliest manifestation as
elementary particles through the appearance of nuclei,
atoms, molecules, minerals, and organic matter. Second,
on the cosmic scale, the origin, evolution, and fate of the
Universe emerge as themes. Third, we are confronted
with the problem of understanding the origin and devel-
opment of life. In each case, we are brought face to
face with the spontaneous rise of extreme complexity
out of extreme simplicity, and with the intimate inter-
relationship of the infinitesimally small and the ulti-
mately large.

Further, our past attempts at addressing these three
great problems have shown us that they are remarkably
intertwined. The very issue of the origin of life is inex-
tricably tied up with the chemistry of interstellar clouds,
the life cycles of stars, the formation of planets, the
thermal and outgassing history of planetary bodies,
and the involvement of geochemical processes in the
origin of organic matter. The connection between life
and planetary environments is so fundamental that it has
been given institutional recognition: it is not widely
known outside the field, but research on the origin of
life in the United States is a mandate of the National
Aeronautics and Space Administration.

Wherever we begin our scientific pilgrimage
throughout the vast range of modern science, we find
ourselves forced to adopt ever broader definitions of our
field of interest. We must incorporate problems not
only on the frontier of complexity, but also from both
extreme frontiers of scale. In this way, we are compel-
led to trespass across many hallowed disciplinary
boundaries.

Further, as we seek an evolutionary account of the
emergence of complexity from simplicity, we become
able to see more clearly the threads that lead from one
science to another. It is as if the phenomena of
extreme scale in physics existed for the express purpose
of providing a rationale for the existence of astronomy.
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The other disciplines evolve logically from cosmic
events:

The astronomical Universe, through the agency of
nuclear reactions inside stars and supernova explosions,
populates space with atoms of heavy elements, which are
the basis of chemistry.

The course of spontaneous chemical evolution of
interstellar matter produces both mineral grains and
organic molecules, giving rise to geochemistry and
organic chemistry.

Solid particles accrete to form large planetary
bodies, and give us geology.

Radioactive elements formed in stellar explosions
are incorporated into these planets, giving life to
geophysics.

Melting, density-dependent differentiation, and out-
gassing take place, and atmospheres and oceans appear:
petrology, meteorology, and oceanography become
possible.

Organic matter is formed, accumulated, concen-
trated, and processed on planetary surfaces, and biology
is born.

Planetary science may then be seen as the bridge
between the very simple early Universe and the full
complexity of the present Earth. Although it partakes
of the excitement of all of these many fields, it belongs to
none of them. It is the best example of what an inter-
disciplinary science should be: it serves as a unifying
influence by helping to dissolve artificial disciplinary
boundaries, and gives a depth and vibrancy to the treat-
ment of evolutionary issues in nature that transcends the
concerns and the competence of any one of the parent
sciences. But there is more: planetary science is centrally
concerned with the evolutionary process, and hence with
people’s intuitive notion of “how things work.” There is
as much here to unlearn as there is to learn.

We, at the turn of the millennium, still live under the
shadow of the clockwork, mechanistic world view for-
mulated by Sir Isaac Newton in the 17th century. Even
the education of scientists is dedicated first and foremost
to the inculcation of attitudes and values that are archaic,
dating as they do from Newton’s era: viewpoints that
must be unlearned after sophomore year. We are first led
to expect that the full and precise truth about nature
may be extracted by scientific measurements; that the
laws of nature are fully knowable from the analysis of
experimental results; that it is possible to predict the
entire course of future events if, at one moment, we
should have sufficiently detailed information about the
distribution and motion of matter. Quantum mechanics
and relativity are later taught to us as a superstructure
on Newtonian physics, not vice versa. We must intern-
ally turn our education upside down to accommodate
a universe that is fundamentally quantum-mechanical,
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chaotic, and relativistic, within which our “normal”
world is only a special case.

All of these issues come to bear on the central ques-
tion of the evolution of the cosmos and its constituent
parts. Most of us have had a sufficient introduction to
equilibrium thermodynamics to know that systems
spontaneously relax to highly random, uninteresting
states with minimum potential energy and maximum
entropy. These are the classical conclusions of J. Willard
Gibbs in the 19th century. But very few of us are ever
privileged to hear about the development of nonequili-
brium thermodynamics in the 20th century, with its
treatment of stable dissipative structures, least produc-
tion of entropy, and systems far removed from thermo-
dynamic equilibrium. Think of it: systems slightly
perturbed from equilibrium spontaneously relax to the
dullest conceivable state, whereas systems far from equi-
librium spontaneously organize themselves into struc-
tures optimized for the minimization of disorder and
the maximization of information content!

It is no wonder that the whole idea of evolution is so
magical and counterintuitive to so many people, and
that the critics of science so frequently are able to defend
their positions by quoting the science of an earlier cen-
tury. We often hear expressed the idea that the sponta-
neous rise of life is as improbable as that a printshop
explosion (or an incalculable army of monkeys laboring
at typewriters) might accidentally produce an encyclope-
dia. But have we ever heard that this argument is
obsolete nonsense, discredited by the scientific progress
of the 20th century? Sadly, there is a gap of a century
between the scientific world view taught in our schools
and the hard-won insights of researchers on the present
forefront of knowledge. The great majority of all people
never learn more than the rudiments of Newtonian the-
ory, and hence are left unequipped by their education to
deal with popular accounts of modern science, which at
every interesting turn is strikingly non-Newtonian. News
from the world of science is, quite simply, alien to them.
The message of modern science, that the Universe works
more like a human being than like a mechanical wind-up
toy, is wholly lost to them. Yet it is precisely the funda-
mental issues of how things work and how we came to
be, what we are and what may become of us, that are of
greatest human interest. The “modern” artist or writer of
the 20th century often asserted modernity by preaching
the sterility of the Universe and the alienation of the
individual from the world. But this supposed alienation
of the individual from the Universe is, to a modern
scientist, an obsolete and discredited notion.

The problems of evolutionary change and ultimate
origins are not new concerns. Far from being the private
domain of modern science, they have long been among
the chief philosophical concerns of mankind. Astronomy



