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Preface

Deformable systems (DS) with distributed parameters such as beams and arches, are
widely used in modern engineering. These structures find wide applications in civil and
transport engineering, in mechanical, robotics and radio-engineering (load-bearing mem-
bers, electric drives for robotics and mechanisms, boards of a radio-electronic apparatus),
etc. The common fundamental feature of these structures is that their dynamical behavior is
described by partial differential equations.

Analysis of any vibration problem of DS starts from definition of its fundamental
characteristics, such as eigenvalues and eigenfunctions. For their calculation, there exist
modern analytical and numerical methods, which are applicable for different mathematical
models of DS. These models describe specific effects and operating conditions.

With the development of high technologies, the purpose of DS and their functional
peculiarities as part of an engineering system in whole is changed. Also, the operating
conditions of the structures are changed. For example, elastic elements become objects of
active control; elastic beam elements are used as mechanical filters in electronics; elastic
DS are used in control and measurement systems, which include elements of different
natures, such as electrical, acoustical, optical, magnetic; beam systems are widely used as
resonant strain gauges in micro-mechanical systems for the measurement of forces,
accelerations, displacements and pressure. There also exist multi-purpose mechanical
systems where elastic elements act simultaneously as load-bearing elements and functional
devices, for a special purpose. Of course, the list of engineering fields where elastic DS are
used is much wider than presented above.

The higher demands to a dynamical structure in whole leads to increasing demands of
each part of a structure and in particular, to its DS. It means that the requirements to the
accuracy of calculation of eigenvalues and eigenfunctions of DS are increased. However,
on the basis of the simplified mathematical models it is impossible to obtain refined
fundamental characteristics and take into account the specific effects.

This handbook presents solutions of eigenvalues and eigenfunctions for the advanced
analysis of beams and arches. Analysis of beams on the basis of mathematical models,
which take into account different additional effects, such as the effects of rotary inertia and
shear force, are considered. Analysis of DS with specific conditions of a structure in
service, such as elastic foundation, axial tensile or compressive load, is shown. Also, the
handbook presents different types of nonlinear vibration problems of the beams, some
results dealing with vibration of optimal designed beams. Special attention is paid to
eigenvalue and eigenfunction problems for arches with different boundary conditions and
with non-uniform cross-section.
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During the last thirty years, a vast amount of information dealing with eigenvalues and
eigenfunctions of DS has been accumulated. However, this information is spread out over
numerous articles that are published in journals, conference proceedings, guidelines,
departmental reports and theses. Existing handbooks do not reflect, in a reasonable
manner, this important problem. For practicing engineers and researchers at universities
and institutions, searching the vast literature, even with ready access to computerized
databases and the Internet for a specific type of problem, this is a difficult and time
consuming task. Solutions of many important problems remain unknown to specialists,
who could greatly benefit from such knowledge.

The objective of this handbook is to provide the most comprehensive, up-to-date
reference of known solutions to a large variety of vibration problems of beams and arches.
The intent is to provide information that is not available in current handbooks and to
provide solutions for the eigenvalues and eigenfunctions problems that engineers and
researchers use for the advanced analysis of dynamical behavior of beams and arches.

The most distinctive feature of this handbook is that it is the most complete collection
of eigenvalues and eigenfunctions for different types of beams and arches that has ever
been published. It includes a large number of cases of beams and arches with concentrated
and distributed parameters with different types of elastic supports and boundary condi-
tions. All problems in this book may be considered as non-classical problems. Authors
understand that division of vibration of deformable structures as classical and non-classical
is conventional. However, this division is convenient in order to consider non-classical
problems separately, i.e., such problems, which take into account additional important
effects (shear, rotary inertia, etc), consider nonlinear problems by analytical methods
(static, physical, geometrical non-linearity), problems of optimal design, as well as some
special problems, for example vibration of beams in magnetic field. Of course, this list of
non-classical problems is not complete. The authors have conducted a very extensive
research of published materials in many countries and compiled solutions to different cases
of vibration of deformable systems. The criteria for the selection of problems included in
the handbook were mainly based on the importance and the frequency of appearance of the
problem in practical engineering applications. Problems selection is based on the 35 years’
combined experience of the authors in the field of structural dynamics.

To compile the information presented in this handbook, the authors carefully reviewed
monographs, journals, handbooks, proceedings, preprints and theses, as well as results of
the authors’ own research. The handbook contains the fundamental and most up-to-date
results concerning eigenvalues and eigenfunctions of beams and arches. The majority of
the sources consulted have been published in the USA, Canada, England, Russia,
Germany, Japan, Israel, and Netherlands over the past 40 years. Each case presented in
the handbook is properly referenced. The majority of the results, which are presented in the
original sources, have been independently verified by the authors.

Authors will appreciate comments and suggestions to improve the current edition. All
constructive criticism will be accepted with gratitude.
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Notation

Cartesian coordinates

Spatial coordinate

Time

Young’s and shear modulus of the beam material, 2G(1 +v) = E
Poisson’s ratio and density of the beam material

Stress and strain of material of a beam

Longitudinal and shear stresses

Longitudinal and transversal displacements of a rod

Velocity of shear and longitudinal waves, ¢Zp = G; c}p = E
Longitudinal and shear propagation constant, k, = w/c;, k, = »/c,
Bending wave number for Bernoulli-Euler rod, kjDj = ?
Length of the beam

Geometrical dimensional of cross sectional of the beam

Cross sectional area moment of inertia of order n

Second moment of inertia of a cross-section area with respect to neutral
line

Mass per unit length of the beam, m = pA4

Lumped mass and moment inertia of the mass

Translational and rotational stiffness coefficients

Dimensionless stiffness coefficients, kXEl = k[, k* ,EI = k,,,[
Cross-sectional area of a beam

Bending stiffness and bending stiffness per unit length, i = EI//
Lateral displacement and slope of the beam

Young’s modulus and density of the foundation material
Foundation modulus of rigidity (Pasternak model)

Elastic transverse translatory stiffness of medium (Winkler foundation
modulus)

Elastic sloping stiffness of medium

Elastic tilting (transverse rotating) stiffness of medium, Nm/m
Axial load

Dimensionless parameter, 2UEl = TI*

First Euler critical load

Bending moment and shear force

Potential and kinetic energy
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NOTATION

Mode shapes

Shear factor

Frequency parameters, A*El = ml*w?, k*EI = mo?, /. = ki

Frequency of transverse vibration of a beam no axial force in ith mode
vibration

Dimensionless frequency parameter of beam no axial force in ith mode
vibration; Qo = /%, o = EI, Qy; = /.

Frequency of transverse vibration compressed beam (relative natural
frequency);

Dimensionless frequency parameter of compressed beam (relative natural
frequency); Qu = w/?

Normalized natural frequency parameter

Hamiltonian

Lagrange multipliers

Volume of a beam

Lower and upper limit of the volume of a beam

Lower and upper bounds of the frequency vibration

Gauge factor

Velocity and critical velocity of the moving liquid

Dimensionless coordinate and radius of gyration, ¢ =x/I, 0 < ¢ < 1,
AP =1

Dimensionless parameters, s2kAGI> = EI

Correction factor

Parameter of magnetic field

Nonlinear parameter of the beam and foundation

Internal pressure

Stiffness coefficients

Flexural stiffness coefficient of moment due to rotational deformation
Flexural stiffness coefficient of moment due to transverse deformation
Flexural stiffness coefficient of shear due to rotational deformation
Flexural stiffness coefficient of shear due to transverse deformation
Puzyrevsky functions

Radial and tangential displacements of an arch

Radius of curvature, rise and span of an arch

Differentiation with respect to time and space coordinate
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CHAPTER1
TRANSVERSE VIBRATION
EQUATIONS

The different assumptions and corresponding theories of transverse vibrations of beams are
presented. The dispersive equation, its corresponding curve ‘propagation constant—
frequency’ and its comparison with the exact dispersive curve are presented for each
theory and discussed.

The exact dispersive curve corresponds to the first and second antisymmetrical Lamb’s
wave.

1.1 AVERAGE VALUES AND RESOLVING
EQUATIONS

The different theories of dynamic behaviours of beams may be obtained from the equations
of the theory of elasticity, which are presented with respect to average values. The object
under study is a thin plate with rectangular cross-section (Figure 1.1).

1.1.1 Average values for deflections and internal forces

1. Average displacement and slope are

+H oy
e .
o _J,,2Hd-‘ (1.1)

+H

v = J‘ylid_v (1.2)
-H 1z

where u, and u, are longitudinal and transverse displacements.
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FIGURE 1.1. Thin rectangular plate, the boundary conditions are not shown.

2. Shear force and bending moment are

+H
0= [o,dv (1.3)

=H.

+H
M= [yo.,dy (1.4)
~H

where o, and o, are the normal and shear stresses that correspond to u, and u,.

Resolving the equations may be presented in terms of average values as follows
(Landau and Lifshitz, 1986)

1. Integrating the equilibrium equation of elasticity theory leads to
2pHiv =@ (1.5)
plip =M.~ Q (1.6)

2. Integrating Hooke’s equation for the plane stress leads to

0= 2HG[W’ +M] (1.7)
H
+H
M. = E({LY' + 2Hv[u(H) — w]} = ELY' +v [ yo,, dy (1.7a)
—H

Equations (1.5)(1.7a) are complete systems of equations of the theory of elasticity with
respect to average values w, i, Q and M. These equations contain two redundant unknowns
u,(H) and u,(H). Thus, to resolve the above system of equations, additional equations are
required. These additional equations may be obtained from the assumptions accepted in
approximate theories.

The solution of the governing differential equation is

w = exp(ikx — iwt) (1.8)

where £ is a propagation constant of the wave and o is the frequency of vibration.

The degree of accuracy of the theory may be evaluated by a dispersive curve k — @ and
its comparison with the exact dispersive curve. We assume that the exact dispersive curve
is one that corresponds to the first and second antisymmetric Lamb’s wave. The closer the
dispersive curve for a specific theory to the exact dispersive curve, the better the theory
describes the vibration process. Short analysis of equations for transversal vibrations on the
basis of different theories are shown below. (Artobolevsky et al. 1979).
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1.2 FUNDAMENTAL THEORIES AND
APPROACHES

1.2.1 Bernoulli-Euler theory

The Bernoulli-Euler theory takes into account the inertia forces due to the transverse
translation and neglects the effect of shear deflection and rotary inertia.

Assumptions

1. The cross-sections remain plane and orthogonal to the neutral axis (y = —w/).
2. The longitudinal fibres do not compress each other (g,, = 0, > M. = ELY").
3. The rotational inertia is neglected (p/__l././ = 0). This assumption leads to

Q=M =—ELw"

Substitution of the previous expression in Equation (1.5) leads to the differential equation
describing the transverse vibration of the beam

Fwo 1 Pw g EL

e =), D = 1.9
ot D} 3 07 2pH (2
Let us assume that displacement w is changed according to Equation (1.8). The dispersive
equation which establishes the relationship between & and w may be presented as

2
w”~

k4:_:k4
D?) 0

This equation has two roots for a forward-moving wave in a beam and two roots for a
backward-moving wave. Positive roots correspond to a forward-moving wave, while
negative roots correspond to a backward-moving wave.

The results of the dispersive relationships are shown in Figure 1.2: dimensionless
parameters are 4 = kH, u, = k,H. Here, bold curves 1 and 2 represent the exact results.
Curves 1 and 2 correspond to the first and second antisymmetric Lamb’s wave,
respectively. The second wave transfers from the imaginary zone into the real one at
kH = m/2. Curves 3 and 4 are in accordance with the Bernoulli-Euler theory. Dispersion
obtained from this theory and dispersion obtained from the exact theory give a close result
when frequencies are close to zero. This elementary beam theory is valid only when the
height of the beam is small compared with its length (Artobolevsky et al., 1979).

1.2.2 Rayleigh theory
This theory takes into account the effect of rotary inertia (Rayleigh, 1877).
Assumptions

1. The cross-sections remain plane and orthogonal to the neutral axis (y = —w/).
2. The longitudinal fibres do not compress each other (g,, = 0, M, = ELY).

From Equation (1.6) the shear force O = M. — /)[:1]}.
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FIGURE 1.2. Transverse vibration of beams. Dispersive curves for different theories. 1, 2-Exact solution;
3, 4-Bernoulli-Euler theory; 5, 6-Rayleigh theory, 7, 8-Bernoulli-Euler modified theory.

Differential equation of transverse vibration of the beam

Fw 1w 1 &*w

2
IV B 2 EW B o 1.10
o DR o dacar . (1.10)

o |y

where ¢, is the velocity of longitudinal waves in the thin rod.
The last term on the left-hand side of the differential equation describes the effect of the
rotary inertia.

The dispersive equation may be presented as follows

2

3 ]
2F, =k}t k2 + 4k, k= 2

where £, is the wave number for the Bernoulli-Euler rod, and £, is the longitudinal wave
number.

Curves 5 and 6 in Figure 1 reflect the effect of rotary inertia.



