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Preface

Since the publication of Transition Metal Chemistry was suspended
with Volume 7, the subject has shown considerable changes in empha-
sis. Many workers, old and new alike, have turned from the tradi-
tional fields of physical inorganic chemistry toward metal organic
chemistry and biological inorganic chemistry. Each of these areas
is serviced by a review series of its own. However, the editors and
the publishers feel that there is a need to bring some features of
these fields together with the longer established subject matter
under a cohesive heading of Transition Metal Chemistry. It is with'
that aim the series has been restarted with Volume 8.

The series will continue to include comprehensive reviews and
monographs at the research level. These reviews will be authored by
scientists active in their individual research areas and will seek

to cover transition metal chemistry widely and in-depth.

GORDON A. MELSON
BRIAN N. FIGGIS
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I. INTRODUCTION

Electron spin resonance (ESR) spectroscopy has become increasingly
popular in recent years for the characterization of the electronic
structure of transition metal complexes. Its field of application
is now extremely broad, ranging from the study of metalloenzymes and
metalloproteins to minerals, polymers, and metallozeolites. This
wide variety of applications demands a thorough knowledge of the ESR
spectra of simple model complexes in order to compare them with the
complicated patterns observed, for instance, in the study of natu-
rally occurring molecules.

In the initial development of the technique, simple complexes
of relatively high symmetry were studied, and the results are now
covered by many excellent textbooks [1-14] and review articles [15-
20]. References to the current literature can be found in the
Chemical Society (London) Specialist Periodical Reports on Electron
Spin Resonance, and more concise reports are also published in
Analytical Chemistry [21].

We wish to review here the ESR spectra of transiton metal com-

plexes in low-symmetry environments, with the aim of showing how it
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is possible to obtain a considerable insight into their electronic
properties by collecting accurate ESR data, and using sophisticated
spin Hamiltonian, ligand field, and molecular orbital calculations.
In order to keep the matter as tractable as possible, we shall limit
our interest to metals of the first transition series. We shall
consider in general only studies on solids, either single-crystal or
polycrystalline powders, since only in these cases can one meaning-
fully relate the spin Hamiltonian parameters to structure.

We shall consider only simple mononuclear complexes and shall
ignore the expanding field of spin-spin coupled systems [22-26]. In
general, we shall mention only 'true' discrete complexes, mostly
with organic ligands, and shall ignore the subject of paramagnetic
impurities in ionic lattices. Also, we shall not mention the ESR
spectra of metalloenzymes and metalloproteins, which are covered by
some excellent reviews [27-33], and which would require a book by
themselves.

O0f the possible oxidation states of a metal ion, only the most
important will be considered. Of course the expression "most im-
portant" is vague; by it we mean the oxidation states that are most
commonly encountered in classic transition metal chemistry, not
considering organometallic complexes in general.

Finally, we shall not touch upon electron spin relaxation
phenomena.

We shall treat in Sec. II the spin Hamiltonian formalism, show-
ing all the subtleties that are required to extend it to the
interpretation of the low-symmetry transition metal complexes. The
restraints on the spin Hamiltonian parameters imposed by crystal
symmetry will be covered in Sec. III. Section IV will provide gen-
eral solutions to the spin Hamiltonian, whereas in Sec. V the solu-
tions for different S values will be given. Section VI will be
devoted to an outline of the computer analysis of single-crystal and
polycrystalline powder spectra. Sections VII and VIII will review
recent achievements in the molecular orbital and ligand field analy-

ses of the spin Hamiltonian parameters. In Sec. IX a survey of the
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experimental results of various metal ions in different oxidation

states will be provided.

IT. THE SPIN HAMILTONIAN

The simplest approach to the interpretation of ESR spectra is that
of the spin Hamiltonian [34,35] formalism, which, as Griffith puts
it, "is a convenient resting place during the long trek from funda-
mental theory to the squiggles of an oscilloscope'" [9]. Essentially,
the spin Hamiltonian is an operator equivalent that is designed to
act on spin coordinates only, giving the same results as the true
Hamiltoﬁién, which may be difficult to handle, with respect to the
énergies of the electronic and nuclear systems. The spin coordi-
nates that are used are not necessarily the true spin coordinates,
but rather may be fictitious ones. Although essentially the same
as the true coordinates for systems with S = 1/2, they can be com-
pletely different in the case of S > 1/2 [1,9]. The choice of the
spin multiplicity to be used for interpreting the ESR spectra within
the spin Hamiltonian formalism is determined a posteriori by the
nature of the ESR spectra themselves.

Another advantage of the spin Hamiltonian formalism is that
many different interactions can easily be taken into consideration
by adding the appropriate terms to the Hamiltonian. A rather com-
plete form of spin Hamiltonian, which can be used for the interpre-
tation of the spectra of magnetically diluted complexes, neglecting
interactions involving the ligand nuclei, is

28 k

BegeS + I-A-S + $-D-S + z Z BEOE *
k=4 q=0

I.p.T - “Ng'gN'I (k even) (D

E:

where up and uy are the Bohr and nuclear magnetons, respectively; B
is the magnetic flux density vector relative to the static magnetic
field; S and I are the electron and nuclear spin vector operators,
respectively; g, é, D, P, and gN are matrices; Og are combinations
of spin operators equivalent to combinations of spherical harmonics,
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and BE are parameters. Although g, A, D, B, and gN are often
referred to as second-rank tensors, only D and P are true tensors;
g, A, and gy are not [1], since their behavior under a rotation of

the reference frame cannot be represented in general by Eq. (2),

Y= xeyex )

In Eq. (2), X is a rotation matrix, and Y and Y' stand for general
tensors. In general, therefore, g, A, and gy are not represented

by symmetric matrices. This can present several difficulties in the
use of the spin Hamiltonian, but these are easily overcome if one
considers the gz = gg and 52 = KA matrices, which are real symmetric
and represent true ;;cond—rank tensors. The principal values and
directions of these tensors are obtained by ESR experiment, yielding
the moduli of g and A.

The terms that have been included in the spin Hamiltonian (1)
represent the Zeeman interaction of electrons (uB§-g-§); the elec-
tron spin-nuclear spin interaction (I°<A°S), often referred to as
hyperfine interaction; the electron spin-electron spin interaction
(S°D*S + ;§; Z Bk E), often referred to as fine interaction; the
nuclear quadrupole interaction (I+P+I); and the nuclear Zeeman
interaction (uNg-gN-Z). Since in the spin Hamiltonian formalism
there is no place for the electron orbital momentum, the electron
spin-electron spin term will contain the contributions from electron
spin-spin, spin-orbit, and orbit-orbit interactions. In the case of
transition metal complexes, it is the spin-orbit interaction that
essentially determines the fine structure term in the spin Hamilton-
ian. The most important OE operators have been tabulated by Abragam
and Bleaney [1] and are shown in Table 1. The same reference also
gives the matrix elements of the OE operators in the spin manifolds

fromS =1 to S = 8.
28
The terms ) ) BEOE have a different form compared to the
k=4 q=0
others included in Eq. (1). They have their origin in a more gen-

eral formalism by which in principle it is possible to express all
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Table 1 The OE Equivalent Operators Needed for 3d Ions

0] = 387 - S(S + 1)

07 = ujzys + 5%

02 = ssg‘z‘ - 30S(S + 1)55 " 35§§ - 6S(S + 1) + 35%(s + 1)2

0F = (/4 {[782 - 55 + 1) - 5187 + 89+ [752 - S(s + 1) - 5]}
0F = (/a)[s, s> + 8% + (s34 sHs ]

0p = (1/2)(s+ 5%

the terms of (1). As a matter of fact, the spin Hamiltonian can be
expressed as a sum of terms having the dimensions BJLSSI1 with s < 2s
and i < 2I in order to have nonzero representative matrix elements
in the spin basis set and £ + s + i = 2n in order to be invariant
under the Kramers operator. The terms with % = i = 0 are the fine
structure terms, s = 2 corresponding to

5505

2.2
+ B202

(3

The terms with £ = 0, s = 1, i=1,and £ =0, s =0, i = 2 are
equivalent to the terms S°A<I and I*P-I of Eq. (1). Higher-order
terms involving the I operators will not be discussed here. In gen-
eral terms, with i = 0, £ =1 and s # 1 may be required. For S = 3/2
spin systems, terms in BS3 have been used frequently [36,37]. It has
to be noted that the latter terms are required for ions having
appreciable 'unquenched' orbital momentum. However, it has been
shown [1] that for an orbitally nondegenerate state, the spin
Hamiltonian (1) is correct to first order in perturbation theory up
to S = 5/2 spin systems.

In general the spin Hamiltonian is expressed in the form of Eq.
(1), the only BEOE terms used being those with k = 4.

Since D and P are traceless tensors, it is customary to reformu-
late the spin Hamiltonian terms that contain them in such a way as to

reduce by one the number of parameters. The relations required are
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D + D +.D =0
—=xx yy '—zz

Bxx * B-yy * Bzz - 4)

I
o

In the case of orthorhombic symmetry, the spin Hamiltonian (1)

takes the explicit form:

H=vyu,|gBS +gBS +gBS } + (A S I

B(®x—=x—x y—vy—y =2z—z—2 —X—X—X

a,  ast) <ol - 2] ol

L py [ﬁ g, n{;ﬁ ] lﬁﬂ + 800

+ BjOi ioi + nuclear Zeeman terms . (5)

where D = (322/2), E = (Qx - gy)/z, Py = (321/2), and n =

(P. -P)/P .
—x Yy =z 2
Sometimes the B40 term in Eq. (5) is assumed to be negligible
and the quartic fine structure terms of (5) are written as
0 4 0.0
84[04 + 504] + B4O4 (6)

Strictly, this represents a cubic field plus a tetragonal distor-

tion. A commonly used equivalent form of Eq. (6) is

2
3E4+S4+S4_S(S+1)(3S + 35 - 1)

6l—xx v -z 5
F |..c4 2 2
+ lSO[;qéz - 30S(S + l)§_Z + 25§_Z + 6S(S + liJ (7)
with
F = 180B0 a = 120B, = 24B4 (8)
N 4 B 4 - 4

When the S-D*S term is expressed according to the equivalent formal-

ism as in Eq. (3), relations

0 2
D = 3B, E = B, (9)

hold.
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In both the Hamiltonians (1) and (5), we have neglected terms
relative to the interactions between the electron spin and the
nuclear spins of ligands. Where these are present, the hyperfine

term in the Hamiltonian (1) becomes

§'éi'li (10)
1

Il 12

i
where N is the number of nuclei that interact with the unpaired
electrons.

The form of the Hamiltonian (5) is fairly general. However,
lower-symmetry environments often can be found for transition metal
ions; anﬁ a more detailed analysis of the symmetry properties of the
tensors that appear in the spin Hamiltonian (1) is appropriate.
Abragam and Bleaney [1] showed, using Kramers doublet and time-
reversal symmetry, that D2 symmetry the principal axes of g and A
tensors had to be coincident, whereas this is not the case in C3
symmetry. These relations were generalized [38] to show that when-
ever the complex has a two (or higher)-fold axis and either a
perpendicular binary axis Cé or o, symmetry elements, g and é are
necessarily collinear. Without the Cé or 9, symmetry elements, g
and A have off-diagonal elements, resulting generally in noncollinear
principal axes. The noncollinearity of g and A tensors in this case
will cause B and I to be referred to different axis systems, and this
will be observable if the nuclear Zeeman effect is measured together
with the hyperfine terms. That can be achieved through electron
nuclear double resonance (ENDOR) experiments.

In Table 2 the relations imposed by crystal symmetry on g and Q
are shown. i

At the end of this section we want to mention, for the sake of
completeness, an equivalent formulation of the spin Hamiltonian that
can be obtained using tensor operators [36,39,40]. In this formal-

ism the generalized spin Hamiltonian is

My M My

H= )} a, T, (B,"S “I °) (11)
PR M S
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In Eq. (11) the summation over m goes from -% to +%&, where % is an
m m2 m3

even integer. (Bz § 2
17273

product of the tensor operators Tﬁlml(B)’ lemz(S)’ and TQSmS(I),

) is concise notation for the tensor

which are the Racah tensor operators constructed with the components
of B, S, and I, respectively.

The values of £ and %, are restricted so that they sum up

s s
to give & even, and ihe iaximum gossible values for 12 and 23 are 2S
and 2I, respectively. There are no general restrictions on 21 ex-
cept those from parity considerations; usually, however, power terms
greater than quadratic in B are neglected.

In this formalism the linear Zeeman term is obtained by putting

L, =1, £, =1, and 23 = 0 in Eq. (11):

1 2
1 1
Hy= T 1 B TqBIT (S) (12)
=-1 k=-1
and the zero field term taking ll = 23 =0, 22 = 28 in (11) is
T 1
H, = B, T, (5) (13)
zfs 020 m=-2 2m m

Buckmaster, Chatterjee, and Shing [41] have written a review
article on the use of the tensor operator formalism in the analysis -
of ESR and ENDOR spectra and have reported several tables that are

useful in computations.

III. ESR SPECTRA AND CRYSTAL SYMMETRY

In order to obtain the most complete experimental information from
an ESR experiment, it is necessary to record single-crystal spectra.
The appearance of single-crystal spectra depends on the site sym-
metry of the metal ion and the point symmetry of the space group of
the lattice. Although often the ESR spectra of a low-symmetry com-
plex may appear to be of higher symmetry than is allowed by the site
symmetry, it must be understood that it can be true only to some

level of approximation, and if the experimental data were obtained



