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Preface

FEztending modules are generalizations of injective modules and, dually, lifting mod-
ules generalise projective supplemented modules. However, while every module has
an injective hull it does not necessarily have a projective cover. This creates a cer-
tain asymmetry in the duality between extending modules and lifting modules; it
stems from the fact that in any module M there exist, by Zorn’s Lemma, (inter-
section) complements for any submodule N but, by contrast, supplements for N
in M need not exist. (A module is extending, or CS, if every complement submod-
ule is a direct summand, and it is lifting if it is amply supplemented and every
supplement is a direct summand.) The terms eztending and lifting were coined by
Harada and Oshiro (e.g., [156, 272]).

The monograph Continuous and Discrete Modules by Mohamed and Miiller
[241] considers both extending and lifting modules while the subsequent Eztending
Modules [85] presents a deep insight into the structure of the former class.

The purpose of our monograph is to provide a similarly up-to-date account
of lifting modules. However, this involves more than a routine dualisation of the
results on extending modules in [85] since, as alluded to in our opening paragraph,
it becomes necessary to be mindful of the existence of supplements and their prop-
erties. An investigation of supplements leads naturally to the topics of semilocal
modules and hollow (dual Goldie) dimension, as studied in [56, 226, 228].

A number of results concerning lifting modules have appeared in the litera-
ture in recent years. Major contributions to their theory came, for example, from
research groups in Japan, Turkey, and India. Moreover, progress in other branches
of module theory has also had a flow-on effect, providing further enrichment to
lifting module theory. Many of the sections in our text end with comments which
highlight the development of the concepts and results presented and give further
details of the contributors and their work.

One aspect of these investigations is the (co)torsion-theoretic point of view
as elaborated in, for example, [329]. This provides a way of studying the corre-
sponding notions in the category of comodules over coalgebras (or corings) which
behaves similarly to the category o[M] of modules subgenerated by some given
module M.

Roughly speaking, the various classes of modules associated with extend-
ing modules are obtained by weakening the injectivity properties correspondingly.
Consequently, our dual concept of lifting modules is pursued through relaxed pro-
jectivity conditions. However, since the existence of supplements in a module M
is not an immediate consequence of (weak) projectivity conditions, we must fre-
quently rely also on either finiteness conditions or structural conditions on the
lattice of submodules of M (such as the AB5* condition).

The authors gratefully acknowledge the contributions of many colleagues and
friends to the present monograph. A considerable part of the material consists of
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reports on their results and some effort was made to coordinate this information
and profit from the induced synergy.

They also want to express their thanks for the financial support behind the
project. In particular, Christian Lomp was partially supported by the Centro de
Matemdtica da Universidade do Porto, financed by FCT (Portugal) through the
programs POCTI and POSI, with national and European Community structural
funds. The cooperation between the partners in Germany and India was supported
by the German Research Foundation (DFG) and the German Academic Exchange
Service (DAAD).

February 2006,

John Clark, Christian Lomp, Narayanaswami Vanaja, Robert Wisbauer



Introduction

In the first chapter, we present basic notions and techniques from module theory
which are employed in the rest of the text. While proofs are often provided, the
reader is referred to standard texts for the background details for the more common
concepts. Section 1 considers the fundamentals of injectivity, setting the scene for
the dual concepts to be introduced later. Similarly, the reader is reminded here of
independent families of submodules, prior to the dual notion of coindependence.
Small submodules, the radical, hollow modules, local modules, and max modules
are considered in Section 2. The next section sees the introduction of coclosed
submodules and coclosure (both key ingredients of Section 20 onwards) while
Section 4 looks at an assortment of projectivity conditions and how these can
influence the endomorphism ring of a module. These weaker forms of projectivity
play important roles throughout the rest of the monograph. The chapter ends with
a section on the hollow dimension of a module, this being the dual of the more
familiar Goldie or uniform dimension.

Chapter 2 considers torsion-theoretic aspects, the first two sections looking at
preradicals, colocalisation, and torsion theories associated with small submodules
and projectivity. Section 8 introduces small modules. Here, given two modules M
and N over the ring R, we say that N is M-small if N is small in some L in
o[M]. The preradical and torsion theories (co)generated by the class of M-small
modules are examined in detail. Corational modules and in particular minimal
corational submodules make their appearance in Section 9, leading to the definition
of a copolyform module — these are duals of notions used in the more familiar
construction and theory of rings and modules of quotients. The last section of this
chapter looks briefly at the theory of proper classes of short exact sequences in
o[M] and supplement submodules relative to a radical for o[M], the hope being
that in the future these general notions will provide further insight to the theory
of lifting modules.

Much of module theory is concerned with the presence (or absence) of de-
composability properties and Chapter 3 presents a treatment of those properties
which are particularly relevant to the theory of lifting modules. This begins with
a section on the exchange property, including characterizations of exchange rings,
exchangeable decompositions and the (more general) internal exchange property.
This is followed by Section 12 which initially looks at LE-modules, that is, modules
with a local endomorphism ring, and modules which decompose as direct sums of
LE-modules. After an overview of the background to Azumaya’s generalization
of the Krull-Schmidt Theorem, this section then looks at Harada’s work on the
interplay between the exchange property and local semi-T-nilpotency. The main
result presented here is an important characterization of the exchange property
for a module with an indecomposable decomposition due to Zimmermann-Huisgen
and Zimmermann (following earlier results by Harada).
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Section 13 introduces the concept of local summands, showing how this is
intimately related to local semi-T-nilpotency, in particular through a theorem of
Dung which also generalises earlier work by Harada. The next section defines
partially invertible homomorphisms and the total, concepts pioneered by Kasch.
The coincidence of the Jacobson radical and the total for the endomorphism ring
of a module with an LE-decomposition provides yet another link with local semi-
T-nilpotency and the exchange property. Section 15 considers rings of stable range
1, unit-regular rings and the cancellation, substitution, and internal cancellation
properties — these concepts are inter-related for exchange rings by a result of Yu.
Chapter 3 ends with a section on decomposition uniqueness, in particular results
of a Krull-Schmidt nature due to Facchini and coauthors, and biuniform modules
(modules which are both uniform and hollow).

A complement of a submodule N of a module M can be defined to be any
submodule L of M maximal with respect to the property that L N N = 0. Dually,
a supplement K of N in M can be defined to be any submodule K of M minimal
with respect to the property that K + N = M. Chapter 4 looks at supplements
in modules, a keystone concept for the rest of the monograph. As emphasised in
our Preface, in contrast to complements of submodules in a module, supplements
of submodules need not exist (consider the Z-module Z, for example). The first
section of the chapter introduces and investigates the class of semilocal modules
and, more specifically, semilocal rings. Weak supplements are also introduced here
and, among other things, weakly supplemented modules (in which every submod-
ule has a weak supplement) are shown to be semilocal (and so, in spite of their
more relaxed definition, weak supplements also do not always exist). Section 18
looks at the connection between finite hollow dimension and the existence of weak
supplements; in particular, it is shown that the rings over which every finitely
generated left (or right) module has finite hollow dimension are those for which
every finitely generated module is weakly supplemented and these are precisely the
semilocal rings. Modules having semilocal endomorphism rings are investigated in
Section 19 and shown to have the n-th root uniqueness property.

Section 20 formally introduces supplements and the classes of supplemented,
finitely supplemented, cofinitely supplemented, and amply supplemented mod-
ules; the relationships between these classes and hollow submodules and hollow
dimension also receive attention. As with their essential closure counterpart, the
coclosure (if it exists) of a submodule in a module need not be unique. Modules
for which every submodule has a unique coclosure are called UCC modules and
investigated in the last section of Chapter 4. In particular, as a dual to the relation-
ship between polyform modules and modules with unique complements, an amply
supplemented copolyform module M is UCC, and, if M & M is a UCC weakly
supplemented module, then M is copolyform and M & M is amply supplemented.
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The opening section of the final Chapter 5 introduces the modules of our title,
lifting modules. As already mentioned, these are the duals of extending modules.
More specifically, a module M is lifting if, given any submodule N of M, N lies
over a direct summand of M, that is, there is a direct summand X of M such that
X C N and N/X is small in M/X. The building blocks of this class, in other words
the indecomposable lifting modules, are precisely the hollow modules. Indeed, any
lifting module of finite uniform or finite hollow dimension is a finite direct sum
of hollow modules and several other conditions are established that guarantee an
indecomposable decomposition for a lifting module. A weaker version of lifting,
namely hollow-lifting, is also considered, as well as the effect of chain conditions
on the lifting property.

The direct sum of two lifting modules need not be lifting, so Section 23
looks at when the direct sum of finitely many lifting modules is also lifting. The
results here involve projectivity conditions defined in Section 4 and exchangeable
decompositions from Section 11. Section 24 looks at the lifting property for infinite
direct sums, in particular for modules with LE-decompositions (with material from
Chapter 3 used extensively) and for direct sums of hollow modules. A module M
is said to be ¥-lifting if the direct sum of any family of copies of M is lifting. If M
is a X-lifting LE-module then it is local and self-projective. Section 25 investigates
y-lifting modules M and their indecomposable summands, in particular when M
is also copolyform or self-injective.

The fairly long Section 26 looks at four subclasses of lifting modules, namely
the weakly discrete, quasi-discrete, discrete, and strongly discrete modules (and
we have the strict hierarchy: lifting = weakly discrete = quasi-discrete = discrete
= strongly discrete). Roughly speaking, each of these may be defined by requiring
the module to be supplemented, its supplement submodules to be further con-
strained, and certain relative projectivity conditions to be satisfied. Each class is
characterized and examined in depth, in particular with regard to decomposition,
factor modules, and stability under direct sums. The section ends with a look at
two particular types of strongly discrete modules, namely the self-projective mod-
ules M which are perfect and, more generally, semiperfect in o[M]. A module M
is called X-lifting (E-eatending) if the direct sum of any family of copies of M is
lifting (extending, respectively).

The study of extending modules and lifting modules has its roots in the
module theory of quasi-Frobenius rings. It is well-known that these rings are char-
acterized as those over which every injective module is projective. Section 27 looks
at the more general situation of modules M for which every injective module in
o[M] is lifting. These are known as Harada modules and if rR is Harada then R
is called a left Harada ring. A module M is called co-Harada if every projective
module in o[M] is Y-extending, and results due to Harada and Oshiro showing the
interplay between Harada, co-Harada, and quasi-Frobenius rings are generalised
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here to a module setting. Finally, Section 28 carries this duality theme further by
investigating modules M for which extending, or indeed all, modules in o[M] are
lifting. We give extensive characterizations of both conditions. Specialising to the
module R, we see that every extending R-module is lifting precisely when every
self-projective R-module is extending and this characterizes artinian serial rings
R. Similarly, every left R-module is extending if and only if all left R-modules are
lifting, and this happens precisely when every left R-module is a direct sum of
uniserial modules of length at most 2.

In the Appendix details are provided of two graph-theoretical techniques,
namely Hall’s Marriage Theorem and Ko6nig’s Graph Theorem. These are used in
Chapter 3.

We have included a collection of exercises for most sections, in the hope that
these will encourage the reader to further pursue the section material.



Notation

Z (Q) the integers (rationals)

card([]) the cardinality of the set I

ACC (DCC)  the ascending (descending) chain condition
id, idas, 1as identity map (of the set M)

Ke f the kernel of a linear map f

Coke f the cokernel of a linear map f

Im f the image of a map f

gof, fog composition of the maps M ILNS L

Mg short for EBke x My where the M} are modules
Gen(M) the class of M-generated modules, 1.1

Tr(M, N) the trace of the module M in the module N, 1.1
Cog(M) the class of M-cogenerated modules, 1.2

Re(N, M) the reject of the module M in the module N, 1.2
o[M] the full subcategory of R-Mod subgenerated by M, 1.3
KM K is a large (essential) submodule of M, 1.5
Soc(M) the socle of the module M, 1.20

K< M K is a small submodule of the module M, 2.2
V(M,N) {f € Hom(M,N) | Im f < N}, 2.4

V(M) {f €End(M) |Im f < N}, 2.4

Rad (M) the radical of the module M, 2.8

Jac (R), J(R) the Jacobson radical of the ring R, 2.11

KL K C L is cosmall in M, 3.2

NE M N is a coclosed submodule of M, 3.7

KEM K is a strongly coclosed submodule of M, 3.12
u.dim(M) the uniform dimension of the module M, 5.1
h.dim (M) the hollow dimension of the module M, 5.2

Cyr the class of singular modules in o[M], 7.8

Zp(N) the sum of the M-singular submodules of N, 7.8
R,GJS\I/I(N) the reject of the M-singular modules in N, 7.9
S[M], S the class of small modules in o[M], 8.2

Trg(N) Tr(S, N), the sum of the M-small submodules of N, 8.5
Res(N) Re (N, S), reject of the M-small modules in N, 8.9

K % L K is a corational submodule of L in M, 9.7
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Chapter 1

Basic notions

1 Preliminaries

For basic definitions, theorems and notation, we refer the reader to texts in Module
Theory, mainly to [363] and [85] and occasionally to [13], [100], and [189]. In this
section, we recall some of the notions which will be of particular interest to us.

Throughout R will denote an associative ring with unit 1 and M will usually
stand for a nonzero unital left R-module; if necessary we will write pM or Mg to
indicate if we mean a left or right module over R. R-Mod and Mod-R denote the
category of all unital left and right modules, respectively.

For R-modules M, N, we denote the group of R-module homomorphisms from
M to N by Hompg(M, N), or simply Hom(M, N), and the endomorphism ring of
M by Endg(M), or End(M). The kernel of any f € Hom(M, N) is denoted by
Ke f, and its image by Im f.

It is of some advantage to write homomorphisms of left modules on the right
side of the (elements of the) module and homomorphisms of right modules on the
left and we will usually do so. In this case we denote by fog the composition of two
left R-module morphisms f: M — N, g: N — L, and so ((m)f)g = (m)fog, for
any m € M. If these are morphisms of right R-modules we write the morphisms
on the left and their composition is (as usual) g o f, and g(f(m)) = go f(m), for
any m € M. When no confusion is likely we may take the liberty to delete the
symbols o or ¢, respectively.

With this notation, a left R-module M is a right module over S = Endp(M)
and indeed an (R, S)-bimodule. (R, S)-submodules of M are referred to as fully
invariant or characteristic submodules.

1.1. Trace. Let M be an R-module. Then an R-module N is called M -generated
if it is a homomorphic image of a direct sum of copies of M. The class of all
M-generated R-modules is denoted by Gen(M).

The trace of M in N is the sum of all M-generated submodules of N; this
is a fully invariant submodule of N which we denote by Tr(M, N). In particular,
Tr(M, R), the trace of M in R, is a two-sided ideal.

Given a class K of R-modules, the trace of K in N is the sum of all K-
generated submodules of N, for all K € K, and we denote it by Tr(K, N).
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Given a left ideal I of R, we have IM € Gen(I), hence IM C Tr(I, M). If I
is idempotent, then ITM = Tr(I, M).

1.2. Reject. Dually, an R-module N is called M -cogenerated if it is embeddable
in a direct product of copies of M. The class of all M-cogenerated modules is
denoted by Cog(M).

The reject of M in N is the intersection of all submodules U C N for which
N/U is M-cogenerated; this is a fully invariant submodule of NV which we denote
by Re(N, M). For any class K of R-modules, the reject of K in N is the intersection
of all submodules U C N such that N/U is cogenerated by modules in the class
K, and we denote this by Re(N,K). It follows that (see [363, 14.4])

Re(N,K) = (){Ke f| f € Hom(N, K), K € K}.

1.3. The category o[M]. An R-module N is said to be subgenerated by M if N
is isomorphic to a submodule of an M-generated module. We denote by o[M] the
full subcategory of R-Mod whose objects are all R-modules subgenerated by M
(see [363, §15]). A module N is called a subgenerator in o[M] if o[M] = o[N].
o[M] is closed under direct sums (coproducts), kernels and cokernels. The
product of any family of modules {N)}, in the category o[M] is denoted by
Hﬁ/[ N,. It is obtained as the trace of o[M] in the product in R-Mod, that is,

[T Nx = Tr(o[M], [T5 Na)-

1.4. Finitely presented and coherent modules in o[M]. Let N € o[M]. Then N is
said to be finitely presented in o[M] if it is finitely generated and, in every exact
sequence 0 — K — L — N — 0 in o[M] where L is finitely generated, K is also
finitely generated (see [363, 25.1]).

N is called locally coherent in o[M] if all its finitely generated submodules
are finitely presented in o[M] (see [363, 26.1]).

N is called locally noetherian if all its finitely generated submodules are
noetherian (see [363, § 27]).

While N is finitely generated in o[M] if and only if it is finitely generated
in R-Mod, modules which are finitely presented in o[M] need not be finitely pre-
sented in R-Mod. For example, let M be a simple module which is not finitely
R-presented; then M is finitely presented in o[M] but not in R-Mod.

In general there need not exist any nonzero finitely presented modules in o[M]
(see [284, Example 1.7]). On the other hand, every finitely generated module is
finitely presented in o[M] if and only if M is locally noetherian (see [363, 27.3]).

1.5. Large (essential) submodules. A submodule K of a nonzero module M is
said to be large or essential (we write K < M) if K N L # 0 for every nonzero
submodule L C M. If all nonzero submodules of M are large in M, then M is called
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uniform. A monomorphism f : N — M is called large or essential if Im f < M.
This can be characterised by the property that any g : M — L for which fo g is
a monomorphism has to be a monomorphism.

1.6. Characterisation of uniform modules. For M the following are equivalent:
(a) M is uniform;
(b) every nonzero submodule of M is indecomposable;

(¢) for any module morphisms K Jom L N, where f # 0, f o g injective
implies that f and g are injective.

Proof. (a)<>(b). For any nonzero submodules U,V C M with UNV = 0, the
submodule U +V = U & V is decomposable.
(a)=>(c). Let fo g be injective. Then clearly f is injective. Assume g is not
injective. Then Im f N Ke g # 0 and this implies Ke f o g # 0, a contradiction.
(c)=(a). Let K,V C M be submodules with K # 0 and K NV = 0. Then
the composition of the canonical maps K — M — M/V is injective and now (c)
implies that M — M/V is injective, that is, V = 0. a

1.7. Singular modules. A module N € o[M] is called M-singular or singular in
o[M] provided N ~ L/K for some L € o[M] and K < L. The class of all M-
singular modules is closed under submodules, factor modules and direct sums and
we denote it by C . Notice that this notion is dependent on the choice of M (i.e.,
the category U[M]) and obviously CM - C/_z

1.8. M-injectivity. A module N is called M -injective if, for every submodule K C
M, any morphism f: K — N can be extended to a morphism M — N. In case
M is M-injective, then M is also called self-injective or quasi-injective.

Any M-injective module is also L-injective for any L € o[M]. For N € o[M],
the injective hull Nin o[M] is an essential extension N <N where N is M- -injective.
It is related to the injective hull E(N) of N in R-Mod by the trace functor. More
specifically, N = Tr(c[M], E(N)) = Tr(M, E(N)) since Tr(c[M],Q) = Tr(M,Q)
for any R-injective module @ (see, e.g., [363, §16, 17]).

1.9. Complement submodules. Given a submodule K C M, a submodule L C M
is called a complement of K in M if it is maximal in the set of all submodules
L' ¢ M with KN L' = 0. By Zorn’s Lemma, every submodule has a complement
in M. A submodule L C M is called a complement submodule provided it is the
complement of some submodule of M. If L is a complement of K in M, then
there is a complement K of L in M that contains K. By construction, K <K and
K has no proper essential extension in M; thus K is called an essential closure of
K in M. In general essential closures need not be uniquely determined.
A submodule K C M is called (essentially) closed if K = K.

The following characterises closed submodules (see [363] and [85]).
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1.10. Characterisation of closed submodules. For a submodule K C M, the fol-
lowing are equivalent:

(a) K is a closed submodule;
(b) K is a complement submodule;
(c) K = KN M, where K is a mazimal essential extension of K in M.
Notice that in (c), K is a direct summand in the M-injective hull M.
1.11. Factors by closed submodules. Let the submodule K C M be a complement
of L C M. Then:
(1) (K+L))K<M/K and K+ L<M.
(2) fU<SM and K CU, then U/K <M/K.
Proof. (1) is shown in [363, 17.6].
(2) First notice that LN U < L and hence K is also a complement of LNU.

By (1), this implies that (K + LNU)/K < M/K. Since (K + LNU)/K Cc U/K
we also get U/K < M/K. O

1.12. Weakly M-injective modules. The module N is called weakly M -injective if
every diagram in R-Mod

0—> K —> MM

|

N

with exact row and K finitely generated, can be extended commutatively by a
morphism M® — N, that is, the functor Hom(—, N) is exact with respect to the
given row. Any weakly M-injective module N € o[M] is M-generated and also
M-generated (see [363, 16.11]). Notice that, putting M = R, weakly R-injective
modules are just F'P-injective modules (see [363, 35.8]).

1.13. m-injective and direct injective modules. A module M is said to be 7-injective

if, for any submodules K, L C M with K N L = 0, the canonical monomorphism
M — M/K @& M/L splits. Furthermore, M is called direct injective if for any
direct summand K C M, any monomorphism K — M splits. Notice that any
self-injective module M has both these properties (e.g., [85], [363]).

Regarding injective modules in o[M] and the locally noetherian property of
M we have the following proved in [363, 27.3, 27.5].
1.14. Decomposition of injective modules. For M the following are equivalent:
(a) M s locally noetherian;

(b) every weakly M -injective module is M -injective;



