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Foreword

This book is the work of the teams involved in the European project
‘URBVENT: Natural Ventilation in the Urban Environment’, which has been
carried out as part of the Fifth Research and Development Programme of the
Directorate for Science, Research and Development of the European
Commission. This project was coordinated by Francis Allard and Cristian
Ghiaus from the University of La Rochelle, France. The assistance of Dr
George Deschamps, the manager of the programme, and Professor Mordechai
Sokolov, external expert of the European Commission, is highly appreciated.

The URBVENT project aimed to create a methodology, embedded in
software, to assess the potential and feasibility of, and to design optimal
openings for, natural ventilation in the urban environment, accessible to
architects, designers and decision-makers. The methodology and the tools have
been tested in three stages by the developers, the end-users and the project
integrator. This book provides knowledge, tools and information on the
efficient use of natural ventilation in urban buildings in order to decrease
energy consumption for cooling purposes, increase indoor thermal comfort
and improve indoor air quality.

The book includes contributions from the whole URBVENT consortium.
The writing of each chapter followed the same philosophy as the project as a
whole: drafting, reviewing and editing. The people involved in each process
were different and each of their contributions are important.

The first chapter is an introduction, drafted by Mat Santamouris and
reviewed by Liam Roche, presenting the importance of natural ventilation
technologies for urban buildings in order to prove that, although it is not an
energy ‘machine’, natural ventilation is an effective engine for progress and
development.

Chapter 2, drafted by Claude-Alain Roulet and reviewed by Liam Roche
and Nicholas Heijmans, describes the role of natural ventilation in indoor air
quality, reduction of energy consumption and comfort.

Chapter 3, which was written by Cristian Ghiaus and Francis Allard,
introduces the reader to the physics of natural ventilation. It is organized into
three main sections: the basics of fluid dynamics, the atmospheric boundary
layer and the modelling of air flows in buildings.

Chapters 4, 5 and 6 address the relationship between urban environment
and natural ventilation. Reduced wind velocity, higher temperatures due to
heat island effect, noise and pollution are considered as barriers to the
application of natural ventilation in the urban environment. Models based on
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first-hand experience acquired within the URBVENT project and in a related
project financed by the French government (the PRIMEQUAL programme)
are presented.

Chapter 4, drafted by Chrissa Georgakis and Mat Santamouris and
reviewed by Frank Tillenkamp, presents the wind and temperature in street
canyons. It is based on experiments achieved in Athens.

Chapter 5§ was written by Michael Wilson, Fergus Nicol, John Solomon
and John Shelton and was reviewed by Frank Tillenkamp. The chapter
explores the problem of noise reduction in street canyons. The results are
derived from experiments carried out in the same streets as the wind and
temperature measurements.

Chapter 6 provides information about outdoor-indoor pollution transfer
as a function of building permeability and outdoor pollutant concentration. It
was authored by Cristian Ghiaus, Vlad lIordache, Francis Allard and Patrice
Blondeau, and Frank Tillenkamp carried out a review.

Chapter 7, drafted by Cristian Ghiaus and Claude-Alain Roulet and
reviewed by Nicholas Heijmans, presents the strategies for natural ventilation
and gives the order of magnitude for pressure difference and airflow rate.

Chapter 8 describes specific devices for the use of natural ventilation.
Examples of the various technologies and some examples of their application
are given: from operable windows to stacks, self-regulating vents and fan-
assisted natural ventilation. Claude-Alain Roulet and Cristian Ghiaus are the
authors of this chapter, and Nicholas Heijmans reviewed their work.

Chapter 9 was drafted by Manuela Almeida, Eduardo Maldonado, Mateo
Santamouris and Gérard Guarracino, and describes the methodology used to
obtain a database of airflow and air change rates as a function of ventilation
strategy used (single-sided or stack-induced) and the position, form and
dimensions of the openings. This database can be used as it is for finding the
optimal opening for a known flow rate. Alternatively, a neuro-fuzzy model
was developed to find the optimal opening when the ventilation strategy and
airflow rate are given.

Chapter 10 introduces an original method for evaluating natural
ventilation potential, which was developed as part of the URBVENT project
by Mario Germano, Cristian Ghiaus and Claude-Alain Roulet. A review of the
method and of the chapter was carried out by Frank Tillenkamp, Nicholas
Heijmans and Liam Roche. The natural ventilation potential (NVP) is
expressed by the probability of ensuring an acceptable indoor air quality using
only natural ventilation. Ensuring an acceptable indoor air quality or cooling
down the building structure using natural ventilation depends upon the site
(outdoor air quality, temperature, wind, moisture and noise, urban structure,
etc.) and upon the building (indoor pollutant, heat sources and stored heat,
position and size of ventilation openings, orientation of building, internal air
path distribution, etc.). The NVP cannot, therefore, be expressed as a single
number. It is a multiple attribute variable — that is, a list of quantitative and
qualitative characteristics of the site and of the building, based on available
input data. It is, nevertheless, possible to decide, on the basis of these



Foreword xvii

characteristics combined with the requirements, if a given building — or a room
in a building - is likely to be sufficiently ventilated or not when natural
ventilation is used. The method is based on two paradigm shifts. The first,
applied to the site, is a qualitative comparison of existing experience
representing the quantification and formalization of qualitative thinking. The
second, applied to the building, is based on the concept of free-running
temperature and uses a modifiable database to estimate the potential for
cooling by ventilation and the possible role of stack-driven ventilation.

Chapter 11, drafted by Cristian Ghiaus and Liam Roche, presents an
analysis of the whole-life costs of ventilation options.

This book is the result of common effort and contributions of the
consortium of the URBVENT project. The participants in this project were:

e Francis Allard and Cristian Ghiaus, LEPTAB (Building Physics
Laboratory), University of de La Rochelle, France;

e Mat Santamouris and Chrissa Georgakis, Group of Building
Environmental Physics, University of Athens, Greece;

e Claude-Alain Roulet and Mario Germano, Ecole Polytechnique Fédérale

de Lausanne, Switzerland;

Frank Tillenkamp and Joachim Borth, Axima Lab, Switzerland;

Nicholas Heijmans, Belgian Building Research Institute, Belgium;

Fergus Nicol and Michael Wilson, London Metropolitan University, UK;

Eduardo Maldonado and Manuela Almeida, IDMEC, University of Porto,

Portugal;

Gérard Guarracino, CNRS/LASH-ENTPE, France;

e Liam Roche, Philippa Westbury and Paul Littlefair, Building Research
Establishment, UK.

We would also like to acknowledge the contribution of James Axley from Yale
University, US, who provided comments and suggestions during his sabbatical
year spent at the University of La Rochelle, France.

Cristian Ghiaus and Francis Allard
March 2005
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