
HISTORY OF MATHEMATICS

THIRD EDITION

Uta C. Merzbach and Carl B. Boyer Foreword by Isaac Asimov

A History of Mathematics

THIRD EDITION

Copyright © 1968, 1989, 1991, 2011 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information about our other products and services, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

```
Boyer, Carl B. (Carl Benjamin), 1906-1976.
```

A history of mathematics / Carl B. Boyer and Uta Merzbach. — 3rd ed. p. cm.

Includes bibliographical references and index.

ISBN 978-0-470-52548-7 (pbk.); ISBN 978-0-470-63039-6 (ebk.);

ISBN 978-0-470-63054-9 (ebk.); ISBN 978-0-470-630563 (ebk.)

1. Mathematics—History. I. Merzbach, Uta C., 1933— II. Title.

OA21.B767 2010

510.9—dc22

2010003424

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

In memory of Carl B. Boyer (1906–1976)
—U.C.M.

To the memory of my parents, Howard Franklin Boyer and Rebecca Catherine (Eisenhart) Boyer —C.B.B.

Foreword to the Second Edition

By Isaac Asimov

Mathematics is a unique aspect of human thought, and its history differs in essence from all other histories.

As time goes on, nearly every field of human endeavor is marked by changes which can be considered as correction and/or extension. Thus, the changes in the evolving history of political and military events are always chaotic; there is no way to predict the rise of a Genghis Khan, for example, or the consequences of the short-lived Mongol Empire. Other changes are a matter of fashion and subjective opinion. The cavepaintings of 25,000 years ago are generally considered great art, and while art has continuously—even chaotically—changed in the subsequent millennia, there are elements of greatness in all the fashions. Similarly, each society considers its own ways natural and rational, and finds the ways of other societies to be odd, laughable, or repulsive.

But only among the sciences is there true progress; only there is the record one of continuous advance toward ever greater heights.

And yet, among most branches of science, the process of progress is one of both correction and extension. Aristotle, one of the greatest minds ever to contemplate physical laws, was quite wrong in his views on falling bodies and had to be corrected by Galileo in the 1590s. Galen, the greatest of ancient physicians, was not allowed to study human cadavers and was quite wrong in his anatomical and physiological conclusions. He had to be corrected by Vesalius in 1543 and Harvey in 1628. Even Newton, the greatest of all scientists, was wrong in his view of the nature of light, of the achromaticity of lenses, and missed the existence of

spectral lines. His masterpiece, the laws of motion and the theory of universal gravitation, had to be modified by Einstein in 1916.

Now we can see what makes mathematics unique. Only in mathematics is there no significant correction—only extension. Once the Greeks had developed the deductive method, they were correct in what they did, correct for all time. Euclid was incomplete and his work has been extended enormously, but it has not had to be corrected. His theorems are, every one of them, valid to this day.

Ptolemy may have developed an erroneous picture of the planetary system, but the system of trigonometry he worked out to help him with his calculations remains correct forever.

Each great mathematician adds to what came previously, but nothing needs to be uprooted. Consequently, when we read a book like *A History of Mathematics*, we get the picture of a mounting structure, ever taller and broader and more beautiful and magnificent and with a foundation, moreover, that is as untainted and as functional now as it was when Thales worked out the first geometrical theorems nearly 26 centuries ago.

Nothing pertaining to humanity becomes us so well as mathematics. There, and only there, do we touch the human mind at its peak.

Preface to the Third Edition

During the two decades since the appearance of the second edition of this work, there have been substantial changes in the course of mathematics and the treatment of its history. Within mathematics, outstanding results were achieved by a merging of techniques and concepts from previously distinct areas of specialization. The history of mathematics continued to grow quantitatively, as noted in the preface to the second edition; but here, too, there were substantial studies that overcame the polemics of "internal" versus "external" history and combined a fresh approach to the mathematics of the original texts with the appropriate linguistic, sociological, and economic tools of the historian.

In this third edition I have striven again to adhere to Boyer's approach to the history of mathematics. Although the revision this time includes the entire work, changes have more to do with emphasis than original content, the obvious exception being the inclusion of new findings since the appearance of the first edition. For example, the reader will find greater stress placed on the fact that we deal with such a small number of sources from antiquity; this is one of the reasons for condensing three previous chapters dealing with the Hellenic period into one. On the other hand, the chapter dealing with China and India has been split, as content demands. There is greater emphasis on the recurring interplay between pure and applied mathematics as exemplified in chapter 14. Some reorganization is due to an attempt to underline the impact of institutional and personal transmission of ideas; this has affected most of the pre-nineteenth-century chapters. The chapters dealing with the nineteenth century have been altered the least, as I had made substantial changes for some of this material in the second edition. The twentieth-century

material has been doubled, and a new final chapter deals with recent trends, including solutions of some longstanding problems and the effect of computers on the nature of proofs.

It is always pleasant to acknowledge those known to us for having had an impact on our work. I am most grateful to Shirley Surrette Duffy for responding judiciously to numerous requests for stylistic advice, even at times when there were more immediate priorities. Peggy Aldrich Kidwell replied with unfailing precision to my inquiry concerning certain photographs in the National Museum of American History. Jeanne LaDuke cheerfully and promptly answered my appeals for help, especially in confirming sources. Judy and Paul Green may not realize that a casual conversation last year led me to rethink some recent material. I have derived special pleasure and knowledge from several recent publications, among them Klopfer 2009 and, in a more leisurely fashion, Szpiro 2007. Great thanks are due to the editors and production team of John Wiley & Sons who worked with me to make this edition possible: Stephen Power, the senior editor, was unfailingly generous and diplomatic in his counsel; the editorial assistant, Ellen Wright, facilitated my progress through the major steps of manuscript creation; the senior production manager, Marcia Samuels, provided me with clear and concise instructions, warnings, and examples; senior production editors Kimberly Monroe-Hill and John Simko and the copyeditor, Patricia Waldygo, subjected the manuscript to painstakingly meticulous scrutiny. The professionalism of all concerned provides a special kind of encouragement in troubled times.

I should like to pay tribute to two scholars whose influence on others should not be forgotten. The Renaissance historian Marjorie N. Boyer (Mrs. Carl B. Boyer) graciously and knowledgeably complimented a young researcher at the beginning of her career on a talk presented at a Leibniz conference in 1966. The brief conversation with a total stranger did much to influence me in pondering the choice between mathematics and its history.

More recently, the late historian of mathematics Wilbur Knorr set a significant example to a generation of young scholars by refusing to accept the notion that ancient authors had been studied definitively by others. Setting aside the "magister dixit," he showed us the wealth of knowledge that emerges from seeking out the texts.

—Uta C. Merzbach March 2010

Preface to the Second Edition

This edition brings to a new generation and a broader spectrum of readers a book that became a standard for its subject after its initial appearance in 1968. The years since then have been years of renewed interest and vigorous activity in the history of mathematics. This has been demonstrated by the appearance of numerous new publications dealing with topics in the field, by an increase in the number of courses on the history of mathematics, and by a steady growth over the years in the number of popular books devoted to the subject. Lately, growing interest in the history of mathematics has been reflected in other branches of the popular press and in the electronic media. Boyer's contribution to the history of mathematics has left its mark on all of these endeavors.

When one of the editors of John Wiley & Sons first approached me concerning a revision of Boyer's standard work, we quickly agreed that textual modifications should be kept to a minimum and that the changes and additions should be made to conform as much as possible to Boyer's original approach. Accordingly, the first twenty-two chapters have been left virtually unchanged. The chapters dealing with the nineteenth century have been revised; the last chapter has been expanded and split into two. Throughout, an attempt has been made to retain a consistent approach within the volume and to adhere to Boyer's stated aim of giving stronger emphasis on historical elements than is customary in similar works.

The references and general bibliography have been substantially revised. Since this work is aimed at English-speaking readers, many of whom are unable to utilize Boyer's foreign-language chapter references, these have been replaced by recent works in English. Readers are urged to

consult the General Bibliography as well, however. Immediately following the chapter references at the end of the book, it contains additional works and further bibliographic references, with less regard to language. The introduction to that bibliography provides some overall guidance for further pleasurable reading and for solving problems.

The initial revision, which appeared two years ago, was designed for classroom use. The exercises found there, and in the original edition, have been dropped in this edition, which is aimed at readers outside the lecture room. Users of this book interested in supplementary exercises are referred to the suggestions in the General Bibliography.

I express my gratitude to Judith V. Grabiner and Albert Lewis for numerous helpful criticisms and suggestions. I am pleased to acknowledge the fine cooperation and assistance of several members of the Wiley editorial staff. I owe immeasurable thanks to Virginia Beets for lending her vision at a critical stage in the preparation of this manuscript. Finally, thanks are due to numerous colleagues and students who have shared their thoughts about the first edition with me. I hope they will find beneficial results in this revision.

—Uta C. Merzbach Georgetown, Texas March 1991

Preface to the First Edition

Numerous histories of mathematics have appeared during this century, many of them in the English language. Some are very recent, such as J. F. Scott's *A History of Mathematics*¹; a new entry in the field, therefore, should have characteristics not already present in the available books. Actually, few of the histories at hand are textbooks, at least not in the American sense of the word, and Scott's *History* is not one of them. It appeared, therefore, that there was room for a new book—one that would meet more satisfactorily my own preferences and possibly those of others.

The two-volume *History of Mathematics* by David Eugene Smith² was indeed written "for the purpose of supplying teachers and students with a usable textbook on the history of elementary mathematics," but it covers too wide an area on too low a mathematical level for most modern college courses, and it is lacking in problems of varied types. Florian Cajori's *History of Mathematics*³ still is a very helpful reference work; but it is not adapted to classroom use, nor is E. T. Bell's admirable *The Development of Mathematics*.⁴ The most successful and appropriate textbook today appears to be Howard Eves, *An Introduction to the History of Mathematics*,⁵ which I have used with considerable satisfaction in at least a dozen classes since it first appeared in 1953.

¹London: Taylor and Francis, 1958.

²Boston: Ginn and Company, 1923–1925. ³New York: Macmillan, 1931, 2nd edition. ⁴New York: McGraw-Hill, 1945, 2nd edition.

⁵New York: Holt, Rinehart and Winston, 1964, revised edition.

I have occasionally departed from the arrangement of topics in the book in striving toward a heightened sense of historicalmindedness and have supplemented the material by further reference to the contributions of the eighteenth and nineteenth centuries especially by the use of D. J. Struik, *A Concise History of Mathematics*.⁶

The reader of this book, whether layman, student, or teacher of a course in the history of mathematics, will find that the level of mathematical background that is presupposed is approximately that of a college junior or senior, but the material can be perused profitably also by readers with either stronger or weaker mathematical preparation. Each chapter ends with a set of exercises that are graded roughly into three categories. Essay questions that are intended to indicate the reader's ability to organize and put into his own words the material discussed in the chapter are listed first. Then follow relatively easy exercises that require the proofs of some of the theorems mentioned in the chapter or their application to varied situations. Finally, there are a few starred exercises, which are either more difficult or require specialized methods that may not be familiar to all students or all readers. The exercises do not in any way form part of the general exposition and can be disregarded by the reader without loss of continuity.

Here and there in the text are references to footnotes, generally bibliographical, and following each chapter there is a list of suggested readings. Included are some references to the vast periodical literature in the field, for it is not too early for students at this level to be introduced to the wealth of material available in good libraries. Smaller college libraries may not be able to provide all of these sources, but it is well for a student to be aware of the larger realms of scholarship beyond the confines of his own campus. There are references also to works in foreign languages, despite the fact that some students, hopefully not many, may be unable to read any of these. Besides providing important additional sources for those who have a reading knowledge of a foreign language, the inclusion of references in other languages may help to break down the linguistic provincialism which, ostrichlike, takes refuge in the mistaken impression that everything worthwhile appeared in, or has been translated into, the English language.

The present work differs from the most successful presently available textbook in a stricter adherence to the chronological arrangement and a stronger emphasis on historical elements. There is always the temptation in a class in history of mathematics to assume that the fundamental purpose of the course is to teach mathematics. A departure from mathematical standards is then a mortal sin, whereas an error in history is venial. I have striven to avoid such an attitude, and the purpose of the

⁶New York: Dover Publications, 1967, 3rd edition,

book is to present the history of mathematics with fidelity, not only to mathematical structure and exactitude, but also to historical perspective and detail. It would be folly, in a book of this scope, to expect that every date, as well as every decimal point, is correct. It is hoped, however, that such inadvertencies as may survive beyond the stage of page proof will not do violence to the sense of history, broadly understood, or to a sound view of mathematical concepts. It cannot be too strongly emphasized that this single volume in no way purports to present the history of mathematics in its entirety. Such an enterprise would call for the concerted effort of a team, similar to that which produced the fourth volume of Cantor's Vorlesungen iber Geschichte der Mathematik in 1908 and brought the story down to 1799. In a work of modest scope the author must exercise judgment in the selection of the materials to be included. reluctantly restraining the temptation to cite the work of every productive mathematician; it will be an exceptional reader who will not note here what he regards as unconscionable omissions. In particular, the last chapter attempts merely to point out a few of the salient characteristics of the twentieth century. In the field of the history of mathematics perhaps nothing is more to be desired than that there should appear a latter-day Felix Klein who would complete for our century the type of project Klein essayed for the nineteenth century, but did not live to finish.

A published work is to some extent like an iceberg, for what is visible constitutes only a small fraction of the whole. No book appears until the author has lavished time on it unstintingly and unless he has received encouragement and support from others too numerous to be named individually. Indebtedness in my case begins with the many eager students to whom I have taught the history of mathematics, primarily at Brooklyn College, but also at Yeshiva University, the University of Michigan, the University of California (Berkeley), and the University of Kansas. At the University of Michigan, chiefly through the encouragement of Professor Phillip S. Jones, and at Brooklyn College through the assistance of Dean Walter H. Mais and Professors Samuel Borofsky and James Singer, I have on occasion enjoyed a reduction in teaching load in order to work on the manuscript of this book. Friends and colleagues in the field of the history of mathematics, including Professor Dirk J. Struik of the Massachusetts Institute of Technology, Professor Kenneth O. May at the University of Toronto, Professor Howard Eves of the University of Maine, and Professor Morris Kline at New York University, have made many helpful suggestions in the preparation of the book, and these have been greatly appreciated. Materials in the books and articles of others have been expropriated freely, with little acknowledgment beyond a cold bibliographical reference, and I take this opportunity to express to these authors my warmest gratitude. Libraries and publishers have been very helpful in providing information and illustrations needed in the text; in particular it has been a pleasure to have worked with the staff of John Wiley & Sons. The typing of the final copy, as well as of much of the difficult preliminary manuscript, was done cheerfully and with painstaking care by Mrs. Hazel Stanley of Lawrence, Kansas. Finally, I must express deep gratitude to a very understanding wife. Dr. Marjorie N. Boyer, for her patience in tolerating disruptions occasioned by the development of yet another book within the family.

—Carl B. Boyer Brooklyn, New York January 1968

Contents

Foreword by Isaac Asimov, xi Preface to the Third Edition, xiii Preface to the Second Edition, xv Preface to the First Edition, xvii

1	Traces	1
	Concepts and Relationships, 1 Early Number Bases, 3 Number Language and Counting, 5 Spatial Relationships, 6	
2	Ancient Egypt The Era and the Sources, 8 Numbers and Fractions, 10 Arithmetic Operations, 12 "Heap" Problems, 13 Geometric Problems, 14 Slope Problems, 18 Arithmetic Pragmatism, 19	8
3	Mesopotamia The Era and the Sources, 21 Cuneiform Writing, 22 Numbers and Fractions: Sexagesimals, 23 Positional Numeration, 23 Sexagesimal Fractions, 25 Approximations, 25 Tables, 26 Equations, 28 Measurements: Pythagorean Triads, 31 Polygonal Areas, 35 Geometry as Applied Arithmetic, 36	21
4	Hellenic Traditions The Era and the Sources, 40 Thales and Pythagoras, 42 Numeration, 52 Arithmetic and Logistic, 55	40

	Quadrature of Lunes, 58 Hippias of Elis, 61 Philolaus and Archytas of Tarentum, 63 Incommensurability, 65 Paradoxes of Zeno, 67 Deductive Reasoning, 70 Democritus of Abdera, 72 Mathematics and the Liberal Arts, 74 The Academy, 74 Aristotle, 88	
5	Euclid of Alexandria Alexandria, 90 Lost Works, 91 Extant Works, 91 The <i>Elements</i> , 93	90
6	Archimedes of Syracuse The Siege of Syracuse, 109 On the Equilibriums of Planes, 110 On Floating Bodies, 111 The Sand-Reckoner, 112 Measurement of the Circle, 113 On Spirals, 113 Quadrature of the Parabola, 115 On Conoids and Spheroids, 116 On the Sphere and Cylinder, 118 Book of Lemmas, 120 Semiregular Solids and Trigonometry, 121 The Method, 122	109
7	Apollonius of Perge Works and Tradition, 127 Lost Works, 128 Cycles and Epicycles, 129 The <i>Conics</i> , 130	127
8	Changing Trends, 142 Eratosthenes, 143 Angles and Chords, 144 Ptolemy's <i>Almagest</i> , 149 Heron of Alexandria, 156 The Decline of Greek Mathematics, 159 Nicomachus of Gerasa, 159 Diophantus of Alexandria, 160 Pappus of Alexandria, 164 The End of Alexandrian Dominance, 170 Proclus of Alexandria, 171 Boethius, 171 Athenian Fragments, 172 Byzantine Mathematicians, 173	142
9	Ancient and Medieval China The Oldest Known Texts, 175 The <i>Nine Chapters</i> , 176 Rod Numerals, 177 The Abacus and Decimal Fractions, 178 Values of Pi, 180 Thirteenth-Century Mathematics, 182	175
10	Ancient and Medieval India Early Mathematics in India, 186 The <i>Sulbasutras</i> , 187 The <i>Siddhantas</i> , 188 Aryabhata, 189 Numerals, 191 Trigonometry, 193 Multiplication, 194 Long Division, 195 Brahmagupta, 197 Indeterminate Equations, 199 Bhaskara, 200 Madhava and the Keralese School, 202	186

Contents vii

11	The Islamic Hegemony Arabic Conquests, 203 The House of Wisdom, 205 Al-Khwarizmi, 206 'Abd Al-Hamid ibn-Turk, 212 Thabit ibn-Qurra, 213 Numerals, 214 Trigonometry, 216 Tenth- and Eleventh-Century Highlights, 216 Omar Khayyam, 218 The Parallel Postulate, 220 Nasir al-Din al-Tusi, 220 Al-Kashi, 221	203
12	The Latin West Introduction, 223 Compendia of the Dark Ages, 224 Gerbert, 224 The Century of Translation, 226 Abacists and Algorists, 227 Fibonacci, 229 Jordanus Nemorarius, 232 Campanus of Novara, 233 Learning in the Thirteenth Century, 235 Archimedes Revived, 235 Medieval Kinematics, 23 Thomas Bradwardine, 236 Nicole Oresme, 238 The Latitude of Forms, 239 Infinite Series, 241 Levi ben Gerson, 242 Nicholas of Cusa, 243 The Decline of Medieval Learning, 243	223 6
13	The European Renaissance Overview, 245 Regiomontanus, 246 Nicolas Chuquet's <i>Triparty</i> , 249 Luca Pacioli's <i>Summa</i> , 251 German Algebras and Arithmetics, 253 Cardan's <i>Ars Magna</i> , 255 Rafael Bombelli, 260 Robert Recorde, 262 Trigonometry, 263 Geometry, 264 Renaissance Trends, 271 François Viète, 273	245
14	Early Modern Problem Solvers Accessibility of Computation, 282 Decimal Fractions, 283 Notation, 285 Logarithms, 286 Mathematical Instruments, 290 Infinitesimal Methods: Stevin, 296 Johannes Kepler, 296	282
15	Analysis, Synthesis, the Infinite, and Numbers Galileo's <i>Two New Sciences</i> , 300 Bonaventura Cavalieri, 303 Evangelista Torricelli, 306 Mersenne's Communicants, 308 René Descartes, 309 Fermat's Loci, 320 Gregory of St. Vincent, 325 The Theory of Numbers, 326 Gilles Persone de Roberval, 329 Girard Desargues and Projective Geometry, 330 Blaise Pascal, 332 Philippe de Lahire, 337 Georg Mohr, 338 Pietro Mengoli, 338 Frans van Schooten, 339 Jan de Witt, 340 Johann Hudde, 341 René François de Sluse, 342 Christiaan Huygens, 342	300
16	British Techniques and Continental Methods John Wallis, 348 James Gregory, 353 Nicolaus Mercator and William Brouncker, 355 Barrow's Method of Tangents, 356	348