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Preface

From its beginnings in the middle of the 20th century, the field of systems dynamics
and feedback control has rapidly become both a core science for mathematicians and
engineers and a remarkably mature field of study. As early as 20 years ago, textbooks
(and professors) could be found that purported astoundingly different and widely
varying approaches and tools for this field. From block diagrams to signal flow graphs
and bond graphs, the diversity of approaches, and the passion with which they were
defended (or attacked), made any meeting of systems and control professionals a
lively event.

Although the various tools of the field still exist, there appears to be a consensus
forming that the tools are secondary to the insight they provide. The field of system
dynamics is nothing short of a unique, useful, and utterly different way of looking
at natural and manmade systems. With this in mind, this text takes a rather neutral
approach to the tools of the field, instead emphasizing insight into the underlying
physics and the similarity of those physical effects across the various domains.

This book has its roots as lecture notes from Lowen Shearer’s senior-level
mechanical engineering course at Penn State in the 1970s with additions from Bohdan
Kulakowski’s and John Gardner’s experiences since the 1980s. As such, it reveals
those roots by beginning with lumped-parameter mechanical systems, engaging the
student on familiar ground. The following chapters, dealing with types of models
(Chapter 3) and analytical solutions (Chapter 4), have seen only minimal revisions
from the original version of this text, with the exception of modest changes in order of
presentation and clarification of notation. Chapters 5 and 6, dealing with numerical
solutions (simulations), were extensively rewritten for the second edition and fur-
ther updated for this edition. Although we made a decision to feature the industry-
standard software package (MATLAB®) in this book (Appendices 3 and 4 are tutori-
als on MATLAB and Simulink®), the presentation was specifically designed to allow
other software tools to be used.

Chapters 7, 8, and 9 are domain-specific presentations of electric, thermal, and
fluid systems, respectively. For the third edition, these chapters have been exten-
sively expanded, including operational amplifiers in Chapter 7, an example of lumped
approximation of a cooling fin in Chapter 8, and an electrohydraulic servovalve in
Chapter 9. Those using this text in a multidisciplinary setting, or for nonmechanical
engineering students, may wish to delay the use of Chapter 2 (mechanical systems)
to this point, thus presenting the four physical domains sequentially. Chapter 10
presents some important issues in dealing with multidomain systems and how they
interact.
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Preface

Chapters 11 and 12 introduce the important concept of a transfer function and
frequency-domain analysis. These two chapters are the most revised and (hopefully)
improved parts of the text. In previous editions of this text, we derived the complex
transfer function by using complex exponentials as input. For the third edition, we
retain this approach, but have added a section showing how to achieve the same
ends using the Laplace transform. It is hoped that this dual approach will enrich
student understanding of this material. In approaching these, and other, revisions,
we listened carefully to our colleagues throughout the world who helped us see where
the presentation could be improved. We are particularly grateful to Sean Brennan
(of Penn State) and Giorgio Rizzoni (of Ohio State) for their insightful comments.

This text, and the course that gave rise to it, is intended to be a prerequisite to
a semester-long course in control systems. However, Chapters 13 and 14 present a
very brief discussion of the fundamental concepts in feedback control, stability (and
algebraic and numerical stability techniques), closed-loop performance, and PID and
simple cascade controllers. Similarly, the preponderance of digitally implemented
control schemes necessitates a discussion of discrete-time control and the dynamic
effects inherent in sampling in the final chapters (15 and 16). It is hoped that these
four chapters will be useful both for students who are continuing their studies in
electives or graduate school and for those for which this is a terminal course of study.

Supplementary materials, including MATLAB and Simulink files for examples
throughout the text, are available through the Cambridge University Press web
site (http://www.cambridge.org/us/engineering) and readers are encouraged to check
back often as updates and additional case studies are made available.

Outcomes assessment, at the program and course level, has now become a fixture
of engineering programs. Although necessitated by accreditation criteria, many have
discovered that an educational approach based on clearly stated learning objectives
and well-designed assessment methods can lead to a better educational experience
for both the student and the instructor. In the third edition, we open each chapter
with the learning objectives that underlie each chapter. Also in this edition, the exam-
ples and end-of-chapter problems, many of which are based on real-world systems
encountered by the authors, were expanded.

This preface closes on a sad note. In March of 2006, just as the final touches were
being put on this edition, Bohdan Kulakowski was suddenly and tragically taken
from us while riding his bicycle home from the Penn State campus, as was his daily
habit. His family, friends, and the entire engineering community suffered a great loss,
but Bohdan’s legacy lives on in these pages, as does Lowen’s. As the steward of this
legacy, I find myself “standing on the shoulders of giants” and can take credit only

for its shortcomings.
JFG

Boise, ID
May, 2007
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Introduction

LEARNING OBJECTIVES FOR THIS CHAPTER

1-1 To work comfortably with the engineering concept of a “system” and its inter-
action with the environment through inputs and outputs.

1-2 To distinguish among various types of mathematical models used to represent
and predict the behavior of systems.

1-3 To recognize through (T-type) variables and across (A-type) variables when
examining energy transfer within a system.

1-4 To recognize analogs between corresponding energy-storage and energy-
dissipation elements in different types of dynamic systems.

1-5 To understand the key role of energy-storage processes in system dynamics.

SYSTEMS AND SYSTEM MODELS

The word “system” has become very popular in recent years. It is used not only in
engineering but also in science, economics, sociology, and even in politics. In spite
of its common use (or perhaps because of it), the exact meaning of the term is not
always fully understood. A system is defined as a combination of components that
act together to perform a certain objective. A little more philosophically, a system
can be understood as a conceptually isolated part of the universe that is of interest
to us. Other parts of the universe that interact with the system comprise the system
environment, or neighboring systems.

All existing systems change with time, and when the rates of change are signifi-
cant, the systems are referred to as dynamic systems. A car riding over a road can be
considered as a dynamic system (especially on a crooked or bumpy road). The limits
of the conceptual isolation determining a system are entirely arbitrary. Therefore any
part of the car given as an example of a system — its engine, brakes, suspension, etc. —
can also be considered a system (i.e., a subsystem). Similarly, two cars in a passing
maneuver or even all vehicles within a specified area can be considered as a major
traffic system.

The isolation of a system from the environment is purely conceptual. Every
system interacts with its environment through two groups of variables. The variables
in the first group originate outside the system and are not directly dependent on what
happens in the system. These variables are called input variables, or simply inputs.
The other group comprises variables generated by the system as it interacts with its

1
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Figure 1.1. A dynamic system.

environment. Those dependent variables in this group that are of primary interest
to us are called output variables, or simply outputs.

In describing the system itself, one needs a complete set of variables, called
state variables. The state variables constitute the minimum set of system variables
necessary to describe completely the state of the system at any given instant of time;
and they are of great importance in the modeling and analysis of dynamic systems.
Provided the initial state and the input variables have all been specified, the state
variables then describe from instant to instant the behavior, or response, of the
system. The concept of the state of a dynamic system is discussed in more detail in
Chap. 3. In most cases, the state-variable equations used in this text represent only
simplified models of the systems, and their use leads to only approximate predictions
of system behavior.

Figure 1.1 shows a graphical presentation of a dynamic system. In addition to the
state variables, parameters also characterize the system. In the example of the moving
car, the input variables would include throttle position, position of the steering wheel,
and road conditions such as slope and roughness. In the simplest model, the state
variables would be the position and velocity of the vehicle as it travels along a straight
path. The choice of the output variables is arbitrary, determined by the objectives of
the analysis. The position, velocity, or acceleration of the car, or perhaps the average
fuel flow rate or the engine temperature, can be selected as the output(s). Some of
the system parameters would be the mass of the vehicle and the size of its engine.
Note that the system parameters may change with time. For instance, the mass of
the car will change as the amount of fuel in its tank increases or decreases or when
passengers embark or disembark. Changes in mass may or may not be negligible for
the performance of a car but would certainly be of critical importance in the analysis
of the dynamics of a ballistic missile.

The main objective of system analysis is to predict the manner in which a system
will respond to various inputs and how that response changes with different system
parameter values. In the absence of the tools introduced in this book, engineers are
often forced to build prototype systems to test them. Whereas the data obtained
from the testing of physical prototypes are very valuable, the costs, in time and
money, of obtaining these data can be prohibitive. Moreover, mathematical models
are inherently more flexible than physical prototypes and allow for rapid refinement
of system designs to optimize various performance measures. Therefore one of the
early major tasks in system analysis is to establish an adequate mathematical model
that can be used to gain the equivalent information that would come from several
different physical prototypes. In this way, even if a final prototype is built to verify
the mathematical model, the modeler has still saved significant time and expense.
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A mathematical model is a set of equations that completely describes the rela-
tionships among the system variables. It is used as a tool in developing designs or
control algorithms, and the major task for which it is to be used has basic implications
for the choice of a particular form of the system model.

In other words, if a model can be considered a tool, it is a specialized tool, devel-
oped specifically for a particular application. Constructing universal mathematical
models, even for systems of moderate complexity, is impractical and uneconomical.
Let us use the moving automobile as an example once again. The task of developing
a model general enough to allow for studies of ride quality, fuel economy, traction
characteristics, passenger safety, and forces exerted on the road pavement (to name
just a few problems typical for transportation systems) could be compared to the
task of designing one vehicle to be used as a truck, for daily commuting to work in
New York City, and as a racing car to compete in the Indianapolis 500. Moreover,
even if such a supermodel were developed and made available to researchers (free),
it is very likely that the cost of using it for most applications would be prohibitive.

Thus, system models should be as simple as possible, and each model should be
developed with a specific application in mind. Of course, this approach may lead
to different models being built for different uses of the same system. In the case
of mathematical models, different types of equations may be used in describing the
system in various applications.

Mathematical models can be grouped according to several different criteria.
Table 1.1 classifies system models according to the four most common criteria: appli-
cability of the principle of superposition, dependence on spatial coordinates as well

Table 1.1. Classification of system models

| Classification criterion  Type of model equation
Nonlinear Principle of superposition does Nonlinear differential equations
not apply
Linear Principle of superposition applies  Linear differential equations
Distributed Dependent variables are Partial differential equations
functions of spatial coordinates
and time
Lumped Dependent variables are Ordinary differential equations
independent of spatial
coordinates
Time-varying Model parameters vary in time Differential equations with
time-varying coefficients
Stationary Model parameters are constant Differential equations with constant
in time coefficients
Continuous Dependent variables defined Differential equations

over continuous range of
independent variables
Discrete Dependent variables defined Time-difference equations
only for distinct values of
independent variables
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as on time, variability of parameters in time, and continuity of independent variables.
Based on these criteria, models of dynamic systems are classified as linear or nonlin-
ear, lumped or distributed, stationary time invariant or time varying, continuous or
discrete, respectively. Each class of models is also characterized by the type of math-
ematical equations employed in describing the system. All types of system models
listed in Table 1.1 are discussed in this book, although distributed models are given
only limited attention.

SYSTEM ELEMENTS, THEIR CHARACTERISTICS,
AND THE ROLE OF INTEGRATION

The modeling techniques developed in this text focus initially on the use of a set
of simple ideal system elements found in four main types of systems: mechanical,
electrical, fluid, and thermal. Transducers, which enable the coupling of these types
of system to create mixed-system models, will be introduced later.

This set of ideal linear elements is shown in Table 1.2, which also provides their
elemental equations and, in the case of energy-storing elements, their energy-storage
equations in simplified form. The variables, such as force F and velocity v used in
mechanical systems, current i and voltage e in electrical systems, fluid flow rate Qy
and pressure P in fluid systems, and heat flow rate O, and temperature 7 in thermal
systems, have also been classified as either T-type (through) variables, which act
through the elements, or A-type (across) variables, which act across the elements.
Thus force, current, fluid flow rate, and heat flow rate are called T variables, and
velocity, voltage, pressure, and temperature are called A variables. Note that these
designations also correspond to the manner in which each variable is measured in a
physical system. An instrument measuring a T variable is used in series to measure
what goes through the element. On the other hand, an instrument measuring an
A variable is connected in parallel to measure the difference across the element.
Furthermore, the energy-storing elements are also classified as T-type or A-type
elements, designated by the nature of their respective energy-storage equations: for
example, mass stores kinetic energy, which is a function of its velocity, an A variable;
hence mass is an A-type element. Note that although T and A variables have been
identified for each type of system in Table 1.2, both T-type and A-type energy-storing
elements are identified in mechanical, electrical, and fluid systems only. In thermal
systems, the A-type element is the thermal capacitor but there is no T-type element
that would be capable of storing energy by virtue of a heat flow through the element.

In developing mathematical models of dynamic systems, it is very important not
only to identify all energy-storing elements in the system but also to determine how
many energy-storing elements are independent or, in other words, in how many ele-
ments the process of energy storage is independent. The energy storage in an element
is considered to be independent if it can be given any arbitrary value without changing
any previously established energy storage in other system elements. To put it simply,
two energy-storing elements are not independent if the amount of energy stored in
one element completely determines the amount of energy stored in the other ele-
ment. Examples of energy-storing elements that are not independent are rack-and-
pinion gears, and series and parallel combinations of springs, capacitors, inductors,
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