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PREFACE

Linear algebra is an important component of undergraduate mathematics, particu-
larly for students majoring in the scientific, engineering, and social science
disciplines. At the practical level, matrix theory and the related vector space concepts
provide a language and a powerful computational framework for posing and solving
important problems. Beyond this, elementary linear algebra is a valuable in-
troduction to mathematical abstraction and logical reasoning because the theoreti-
cal development is self-contained, consistent, and accessible to most students.

Therefore this book stresses both practical computation and theoretical
principles and centers around

matrix theory and systems of linear equations,
elementary vector-space concepts, and

the eigenvalue problem.

The text is designed for a one-term course at the late-freshman or sophomore level
and is organized so that these three topics can be covered in even a short (10-week)
course. However there is enough material for a more leisurely paced course or for a
sophomore/junior course at the level of the usual “advanced engineering mathe-
matics” sequence.

To provide a measure of flexibility, we have written Chapters 3, 4, 5, and 6 so
that they are essentially independent and can be taken in any order once Chapters 1
and 2 are covered. In particular Chapter 5 (Determinants) can be covered before
Chapter 3(Eigenvalues) if desired, all or portions of Chapter 4 (Abstract Vector
Spaces) can be covered at any time, etc. The chapter dependencies are given
schematically by the following diagram.

Chapter I

Chapter 2

Chapter 3 Chapter 4 Chapter 5 Chapter 6
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For example, a short course at the beginning level can be built around Sections
1.1-1.8, 2.1-2.4, 3.1-3.6 and can be supplemented by other topics such as least-
squares approximations, abstract vector spaces, determinant theory, etc. (Also a
brief review of vector geometry is given in the appendix.)

We have introduced the idea of linear independence very early (in Section 1.6)
and use it extensively thereafter. Linear independence is one unifying thread running
throughout the text. In addition, the early introduction of linear independence will
ease the transition from the concrete material in Chapter 1 to the more abstract ideas
in Chapter 2, such as subspace, basis, and dimension in R". The treatment of the
eigenvalue problem in Chapter 3 is more detailed than that in most books at this
level, and we emphasize computation and application of eigenvalues as well as the
theoretical foundations. In Sections 3.2 and 3.3, eigenvalues are introduced in the
traditional way, including a brief discussion of determinants. In Sections 3.7-3.9 we
use similarity transformations to explain reduction to Hessenberg form, and then we
show the parallels between Hessenberg form for the eigenvalue problem and echelon
form for the problem of solving Ax =b. The material in Sections 3.7-3.9 is
theoretically complete, computationally relevant, and developmentally important
for ideas such as the Cayley-Hamilton theorem and generalized eigenvectors.
Finally if a more comprehensive treatment of determinants is desired before
introducing eigenvalues, Chapter 5 can be covered before Chapter 3.

Our applications have been drawn from differential equations and difference
equations and from problems of interpolating data and finding best least-squares fits
to data. In particular in their major curriculum most students have been exposed to
problems of drawing curves that fit experimental or empirical data, and they can
appreciate the techniques from linear algebra that can be applied to these problems.
In Chapter 6 we also discuss numerical methods for linear algebra and include a
number of simple computer programs that can be used to implement the numerical
methods. These programs are in the form of well-documented subroutines and
include, for example, programs that solve (n x n) systems Ax = b where 4 and b may
contain complex entries, programs that use Householder transformations to reduce
A to Hessenberg form, and programs that use the Givens algorithm to find the
eigenvalues and eigenvectors for a symmetric matrix.

As far as the nature of the material permits, we have tried to organize each
section so that it can be covered in one period; where such organization is not
possible, we have tried to follow with a short section. The individual sections contain
a number of examples, many worked in extreme detail so that the student can read
them unassisted. Some sections also contain optional material, marked with a dagger
(+); this material can be omitted without any loss of continuity. In particular, entire
sections, such as +2.5 and +2.6, may be skipped. In keeping with the introductory
nature of the text, many of the exercises are routinely computational while many of
the theoretical exercises contain fairly strong hints and should be relatively easy.
Some of the exercises are designed also to motivate and give concrete illustrations of
topics in later sections. We have made a determined effort to construct the exercises
so that the numerical calculations proceed smoothly and do not obscure the point of
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the problem, and we have tried also to be certain that the answer key is correct.
We have attempted to make the text theoretically complete and self-contained
although the inherent nature of the material means that some of the topics demand
more mathematical maturity. In particular, Section +3.10 and some of the later
sections in Chapter 4 are probably not appropriate for most beginning students.
Finally we would like to express our appreciation and gratitude to the following
reviewers for their assistance during the development of the manuscript: Betty J.
Barr from the University of Houston, Monte Boisen from Virginia Polytechnic
Institute and State University, William A. Brown from the University of Southern
Maine, Alexander Hahn from the University of Notre Dame, Steven K. Ingram from
Norwich University, Robert M. McConnel from The University of Tennessee, and
Gerald J. Roskes from Queens College of The City University of New York.

Blacksburg, Virginia L.W.J.
January 1981 R.D.R.
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MATRICES AND
SYSTEMS OF LINEAR
FQUATIONS

1.1 INTRODUCTION AND GAUSS ELIMINATION

In science, engineering, and the social sciences, one of the most important and
frequently occurring mathematical problems is finding a simultaneous solution to a
set of linear equations involving several unknowns. A simple example is the problem
of finding values for x, and x, that simultaneously satisfy the equations

xl +XZ =3 3
Xy —X; =1,

This system of equations is easily solved by observing that the first equation requires
x; = 3 —x,. Inserting that relationship in the second equation gives (3 —x;) —x,
= 1, which yields x, = 1; and hence x, = 2. An alternative approach is to add the
two equations together finding (x, + x,) + (x; — x,) = 4, or 2x, = 4. Thus again x,
=2 and x, = 1 is the solution. This simple system of two equations in two
unknowns is quite easy to solve, but obviously some sort of systematic procedure is
needed to handle the more complicated problems that arise in practice. To answer
this need, the first topic of this chapter is the general problem of solving a system of m
linear equations in n unknowns; and the goal is to develop a systematic and
computationally efficient method for solving such systems. Whenever it is appropri-
ate, we will also comment on the practical aspects of solving systems of linear
equations on a digital computer.

An (m x n) system of linear equations is the system of m linear equations in n

unknowns:
a1 Xy +a;,x, + ... + ax, = b
ay Xy +a;x;+ ...+ apx, =b,
. ) ) (L.1)
Api1 X1+ Apa X+ ... + ApuX, = b,,.

In (1.1) the coefficients a;; for 1 <i < m, 1 <j < nare known constants as are b,,
b,,...,b,. The unknowns in the system are designated x,, x,,...,X,; and a

1



2 Matrices and systems of linear equations

solution to (1.1) is a set of n numbers x,, x,, . . ., x, that satisfies each of the m
equations in (1.1)*. The subscript notation in (1.1) is necessary to identify the
variables and the constants. For example in the general (3 x 3) system

ay Xy +agx;+ag3x; = by
a21X1+ A%, +dz3x3 = b,
a31X; +az;x, +0az3x3 = by,

the subscript notation signifies that as, is the coefficient of the second variable, x,, in
the third equation. The system (1.1) is called linear since each equation is of the first
degree in each of the variables x,, x,, ..., x,. That is, none of the equations
contains terms such as x7, x,x,, sinx;, etc. An example of a system of nonlinear
equations is

x3+x2=9

x1+X2 =1.

(The solutions of this system are the points on the intersection of the circle x? + x2
= 9 and the line x; + x, = 1.)

The linear system (1.1) is called consistent if it has at least one solution and is
called inconsistent if there is no solution. In (1.1) we have placed no restriction on the
relative sizes of m and n; so we may have more equations than unknowns (m > n),
more unknowns than equations (m < n), or an equal number of equations and
unknowns. Before discussing methods for solving (1.1), we show by example (even
when m = n) that a linear system may have no solution, a unique solution, or
infinitely many solutions. As one simple example, the (2 x 2) system

X+ x,=2
2x;+2x, =4

is consistent but has infinitely many solutions. Clearly any values of x, and x, that
are related by x, = 2 —x, (for example, x;, =1, x, =1 or x; = —3, x, = 5) will
satisfy both equations. On the other hand the (2 x 2) system

X1 + x2 =
xXi+x,=1

is clearly inconsistent. Finally the first example given,
X, +x,=3
xl _XZ = 1,

is a consistent system with the unique solution x; = 2, x, = 1.
The examples above are typical because a consistent system of linear equations

* For clarity of presentation, we will assume throughout this chapter that the constants a;;
and b, are real numbers although all statements are equally valid for complex constants.
When we consider eigenvalue problems, we will occasionally encounter linear systems
having complex coefficients; but the solution technique is no different.
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always has either exactly one solution or infinitely many solutions. Each of these
three systems has a simple geometric interpretation, as shown in Fig. 1.1.
Geometrically a solution to a (2 x 2) system of linear equations represents a point of
intersection of two lines; and there are three possibilities: the two lines may be
coincident (the same line), they may be parallel (having no points of intersection), or
the lines may intersect in exactly one point.

Xy A Xy A X3

N

X1 X1 X1

Fig. 1.1 Geometry of (2 x 2) linear systems.

The simplest and best-known method for solving a general (m x n) system as in
(1.1) is the familiar variable-elimination technique known as Gauss elimination. This
technique is computationally practical and is the procedure most widely used in
computer-software packages that are designed to solve systems of linear equations.
We shall illustrate Gauss elimination with an example, and then follow with a more
careful description of this solution process. Consider the (3 x 3) linear system

x1+2X2+ X3:4
x1+ XZ+3X3:0
2x;— X;— Xx3 =1L

If we multiply the first equation by — 1 and add the result to the second equation,
and then multiply the first equation by — 2 and add the result to the third equation,
we obtain the following system where x; has been eliminated from the second and
third equations:
X +2x,+ x3= 4
— X;4+2x3=—4
—5x, —3x3=—T.

For the moment we ignore the first equation and eliminate x, by multiplying the
second equation by — 5 and adding the result to the third equation. In this way we
eliminate x, from the third equation and obtain a system having a “triangular form”:

X1 +2x2+ X3 = 4
— X3+ 2x3=—4
—13x, 13.



4 Matrices and systems of linear equations

From the third equation we find x; = — 1. Using x3 = —1 in the second equation
yields —x, —2 = —4, or x, = 2. Finally in the first equation, x, +4 —1 = 4, or x,
= 1. We can easily verify that x, = 1, x, = 2, x; = —1 is a solution of the original
system. (Geometrically the solution x, =1, x, =2, x3 = —1 is the point of
intersection of the three planes: x; +2x, + x3 =4, x; + x, + 3x3 = 0,2x; —x, — x;
=1)

In general the steps of Gauss elimination follow almost exactly as in the example
above. The objective of Gauss elimination is to transform the system (1.1)

aj Xy +agx,+ ... tag,x, =b,
Ay X, +a3,%X,+ ... +az,x,=b,
Am1 X1 +am2x2+ LA +amnxn =bm

systematically into an equivalent linear system that is easier to solve. By a system that
is equivalent to (1.1), we mean a system with unknowns x,, x,, . . . , x, that has
exactly the same solution set as (1.1). To be more precise, consider the (r x n) system:

Ci1X1 +C1aXa+ ..o +CiaX, =d,
Clel +C22X2+ B & +C2,,X,, ———dz

; ; ; (1.2)
ChiX1 +CaXy + ... FCpX, =d,.

Then (1.1)and (1.2) are equivalent systems if any solution of (1.1) is a solution of (1.2)
and any solution of (1.2) is a solution of (1.1).

Gauss elimination [ that is, the transformation of (1.1) into an easily solved but
equivalent system] is carried out using the three elementary operations listed below:

1. interchange of two equations,
2. multiplication of an equation by a nonzero scalar, and
3. addition of a constant multiple of one equation to another.

In Exercise 11, Section 1.1, the reader is asked to prove that the application of any of
these elementary operations to a system will produce an equivalent system. A precise
description of Gauss elimination is most easily given in the language of matrix
theory; so we defer this precise description until Section 1.2. However in order at
least to describe the essence of Gauss elimination and to allow the reader some
practice in solving linear systems, we will indicate briefly how the basic steps are
carried out.

The first stage of Gauss elimination as applied in solving (1.1) is to use the first
equation and the three elementary operations to eliminate x, from equations 2,
3,...,m. This elimination is easily done (if a;, # 0) by multiplying the first
equation by —a;;/a,, and adding the result to the ith equation, fori = 2,3, ..., m.
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For each i, i > 2, the effect is that of replacing the original ith equation by a new
equation in which x, does not appear, and of producing a system equivalent to (1.1):

a; Xy +a;,x,+. .. +ax,=b,
a53X,+. . .+ a5,x, = b)

(1.3)

a:nzxz 4+ s s +a;,,,,x,,= b:"

In (1.3) the primed terms indicate the equations that result when multiples of the first

equation are added to equations 2, 3, . . . ,m of (1.1). In particular the primed terms
in (1.3) are
aiy aiy
o — g d b =b-"Lp.
au al_] a al] an i i aj, 1

If a;; = 0in (1.1), then we would have to interchange equations in (1.1) in order to
eliminate x, . We will consider complications of this sort more thoroughly in the next
section. Also note that if we can solve the last m —1 equations of (1.3) for
X3, X3, - - . , X, then we can determine x, from the first equation of (1.3). Thus in
(1.3) we have essentially reduced the problem of solving (1.1) to the smaller problem
of solving a system of m — 1 equations in n — 1 unknowns.

The next step in Gauss elimination is to use the second equation of (1.3) to
eliminate x, from equations 3,4, ..., m. If a5, # 0, this elimination is accom-
plished by multiplying the second equation of (1.3) by —aj,/da), and adding the
result to the ith equation of (1.3), for i = 3, 4, . . ., m. Carrying this out, we obtain

ay X, +a;,x,+a3x3+. . .+a;,x,=b;
a5,X, +a533X3+. . .+ d5,x, = b)
ay3x3+...+ayx, = bl

Ap3X3+. ..+ aApeX, = biy.

Moreover (1.4) is equivalent to (1.3), and (1.3) is equivalent to (1.1) since they were
derived by elementary operations. Thus any solution of (1.4) is a solution of (1.1),
and any solution of (1.1) is a solution of (1.4).

Although Gauss elimination may proceed not quite so neatly as we are
describing it, our objective is to produce a linear system that is equivalent to (1.1)and
that has the following form (in the case m < n):

Ci1Xg+eiaXo+. o Xt O X, =dy
CoaXot .o o+ CopXmt ..+ CopX, =d> (1.5)

Cmmxm + A + cmnxn = dm M
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If the coefficients ¢, ,, ¢,5, . . . , ¢,y are all nonzero, then we can solve (1.5) relatively
easily; in the special case that m = n, the solution will also be unique. The solution
process for (1.5)is called backsolving and proceeds in the obvious fashion. That is, if

we allow x,,., ..., x, to be variables (or free parameters), then x,, is determined
from the last equation of (1.5) by

Xm = (dm_cm.m+1xm+1 T —Cmnxn)/cmm'

This formula for x,, is then inserted in the (m — 1)st equation of (1.5) to determine
X, —1.1n general, x; is determined from the ith equation of (1.5) using x;,{, . . ., X,,.
We will treat the case that some ¢;; = 0 and the case that m > n in the next section,
using the idea of an echelon matrix. (Echelon matrices will serve also as convenient
notational devices allowing us to organize the steps of Gauss elimination in a
compact fashion.) We conclude this section with a number of simple examples that
illustrate Gauss elimination.

EXAMPLE 1.1 To demonstrate Gauss elimination, we use the procedure to solve the

system
X, —2X,+ X3 =
2X1+ XZ_ X3= 1 (1.6)
—3x;+ x,—2x3=-5.

Following the description given above, we multiply the first equation by —2and add
the result to the second, and then multiply the first equation by 3 and add the result
to the third (in the previous notation, —a,,/a;; = —2 and —as,/a;; = 3). These
steps yield an equivalent system of the form (1.3):

X —2x3+ x3= 2
Sx; =3x3= -3 (1.6a)
—5x,+ x3= L

The final step for this simple example is to eliminate x, from the third equation by
adding the second equation to the third (in the notation used above, —a’3,/a5, = 1).
We thus arrive at a “triangular” system [of the form (1.5)], which is equivalent to
(1.6):

X;—2x,+ x3= 2
5x,—3x3= -3 (1.6b)
—2x3 = —2.

If we backsolve, the last equation of this triangular system yields x; = 1; and by
having x5 = 1, the second equation requires 5x, = 0, or x, = 0. Given that x; =1
and x, = 0, then the first equation yields x; = 1. Clearly the only solution of the
triangular system (1.6b) is x; = 1, x, = 0, x3 = 1; and since the triangular system
and the original system (1.6) are equivalent, we know that the only solution of (1.6) is
also given by x; =1, x, =0, x; = L.
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EXAMPLE 1.2 In this example we use Gauss elimination to show that the system

(1.7) has no solution: X =2, — x, = —2

2X1+ XZ+3X3: 1 (1.7)
—3x;+ x,—2x3= 11
Proceeding as in Example 1.1, we multiply the first equation by —2 and add the
result to the second equation, and then multiply the first equation by 3and add to the
third equation. These steps give
X1 —2x2— X3 = —2
S5x;4+5x3= 5
—5x, —5x3 = —409.

Next adding the second equation to the third, we obtain a system equivalent to (1.7):

X1 —2x;— X3= —2
S5x,4+5x3= 5§ (1.7a)
Ox;= .l

Because there is no number x5 such that Ox; = .1, the system (1.7a)is an inconsistent
system. Since (1.7a) and (1.7) are equivalent systems, then (1.7) has no solution. In a
later section we will develop a procedure for finding a “best” approximate solution to
(1.7), that is, a procedure for finding a set of values x,, x,, x; that comes closest to
solving (or “best fits”) the three equations in (1.7).

EXAMPLE 1.3 Thisexample shows how Gauss elimination can be used to exhibit all
the solutions of a consistent system that has infinitely many solutions. Applying
Gauss elimination to

Xy —2X3— X3 = —2
2x 4+ x;4+3x3= 1 (1.8)
—3x,+ x,—2x3= 1,

we find after eliminating x, that (1.8) is equivalent to

Xy —2x;— X3=—2
Sx,+5x35= 5
—5x; —5x3 = —5.

Multiplying the second equation by 1 and adding the result to the third, we next

obtain Xy =2%y— X3= —2
S5x,4+5x3= 5 (1.8a)
Ox;= 0.

This case is unlike (1.7a) because the last equation Ox; = 0 can be satisfied by any
value of x;. In fact we may as well dispense completely with the last equation of
(1.8a); then we see that (1.8) is equivalent to the (2 x 3) system

X;—2x,— x3=—2
5."2+5X3 . 5. (lgb)
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Backsolving (1.8b), we find x, = 1 — x; from the second equation of (1.8b); and then
X; = —24x342x, = —24+x3+2(1 —x3) = —x; from the first equation. Thus

the solution of (1.8) is Xy = —x3

X, =1-—x3
where x; is a free parameter. For example x; = 0, x, = 1, x, = Ois a solution as is
x3=4,x,=-3,x;, = -4

EXAMPLE 1.4 In this example we solve a simple “rectangular” system, the
(3 x 4) system

XZ+ X3 — X4 = 0
X1 —Xp+3x3—x4=—2
X1+X2+ XS+X4= 2.

We immediately observe that the first equation cannot be used to eliminate x; from
the second and third equations. This problem is easily overcome by interchanging
the first and second equations, and we obtain an equivalent system

Xy —Xy+3x;3—x, = —2
X+ x3—x,= 0
x1+X2+ X3‘+‘X4= 2

o h
Eliminating x,, we have Xy — Rgh IRy — Ry —2
X+ x3— x4,= 0
2x, —2x5+2x, 4,

Il

Finally we eliminate x, from the third equation by multiplying the second equation
by —2 and adding the result to the third:

X;—X3+3x3— x,=—2
Xo+ x3— x,= 0
—4x,+4x, = 4.

We can solve the last equation for x5 in terms of x, (and find x3 = x, —1) or for x, in
terms of x5 (and find x, = 1+ x3). Selecting x; = x, —1, we have x, = 1 from the
second equation and x; = 2 — 2x,. If we had chosen to write the solution in terms of
x5 instead of x,, we would have used x, = 1 + x5, then found x, = 1 and finally x,

= —2x5. Thus for this example we can give two forms for the solution set:

x, =2—-2x, x; = —2x;
x, =1 or xy=1
X3 =Xx4—1 X, =14+ xj;.

We could have rearranged variables in the original system so that Gauss elimination
resulted in solving for x5 and x, in terms of x,. For this particular example we will
always obtain x, = 1, and hence it would not have been possible to solve for x,, x3,
and x, in terms of x,. What is invariant about these solution sets is that x, = 1 and
that any two of the remaining variables may be expressed in terms of the third. Hence
we have one independent (unconstrained) variable and three dependent (con-



