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Preface

Computational chemistry, alternatively sometimes called theoretical chemistry or molecular
modeling (reflecting a certain factionalization amongst practitioners), is a field that can be
said to be both old and young. It is old in the sense that its foundation was laid with the
development of quantum mechanics in the early part of the twentieth century. It is young,
however, insofar as arguably no technology in human history has developed at the pace
that digital computers have over the last 35 years or so. The digital computer being the
‘instrument’ of the computational chemist, workers in the field have taken advantage of this
progress to develop and apply new theoretical methodologies at a similarly astonishing pace.

The evidence of this progress and its impact on Chemistry in general can be assessed in
various ways. Boyd and Lipkowitz, in their book series Reviews in Computational Chemistry,
have periodically examined such quantifiable indicators as numbers of computational papers
published, citations to computational chemistry software packages, and citation rankings of
computational chemists. While such metrics need not necessarily be correlated with ‘impor-
tance’, the exponential growth rates they document are noteworthy. My own personal (and
somewhat more whimsical) metric is the staggering increase in the percentage of exposi-
tion floor space occupied by computational chemistry software vendors at various chemistry
meetings worldwide — someone must be buying those products!

Importantly, the need for at least a cursory understanding of theory/computation/modeling
is by no means restricted to practitioners of the art. Because of the broad array of theoretical
tools now available, it is a rare problem of interest that does not occupy the attention of both
experimental and theoretical chemists. Indeed, the synergy between theory and experiment
has vastly accelerated progress in any number of areas (as one example, it is hard to imagine
a modern paper on the matrix isolation of a reactive intermediate and its identification
by infrared spectroscopy not making a comparison of the experimental spectrum to one
obtained from theory/calculation). To take advantage of readily accessible theoretical tools,
and to understand the results reported by theoretical collaborators (or competitors), even the
wettest of wet chemists can benefit from some familiarity with theoretical chemistry. My
objective in this book is to provide a survey of computational chemistry — its underpinnings,
its jargon, its strengths and weaknesses — that will be accessible to both the experimental
and theoretical communities. The level of the presentation assumes exposure to quantum
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and statistical mechanics: particular topics/examples span the range of inorganic, organic,
and biological chemistry. As such, this text could be used in a course populated by senior
undergraduates and/or beginning graduate students without regard to specialization.

The scope of theoretical methodologies presented in the text reflects my judgment of
the degree to which these methodologies impact on a broad range of chemical problems,
i.e.. the degree to which a practicing chemist may expect to encounter them repeatedly
in the literature and thus should understand their applicability (or lack thereof). In some
instances. methodologies that do not find much modern use are discussed because they help
to illustrate in an intuitive fashion how more contemporary models developed their current
form. Indeed. one of my central goals in this book is to render less opaque the funda-
mental natures of the various theoretical models. By understanding the assumptions implicit
in a theoretical model. and the concomitant limitations imposed by those assumptions, one
can make informed judgments about the trustworthiness of theoretical results (and econom-
ically sound choices of models to apply. if one is about to embark on a computational
project).

With no wish to be divisive, it must be acknowledged: there are some chemists who
are not fond of advanced mathematics. Unfortunately, it is simply not possible to describe
computational chemistry without resort to a fairly hefty number of equations, and, particularly
for modern electronic-structure theories, some of those equations are fantastically daunting
in the absence of a detailed knowledge of the field. That being said, I offer a promise to
present no equation without an effort to provide an intuitive explanation for its form and the
various terms within it. In those instances where I don’t think such an explanation can be
offered (of which there are, admittedly, a few), I will provide a qualitative discussion of the
area and point to some useful references for those inclined to learn more.

In terms of layout, it might be preferable from a historic sense to start with quantum theo-
ries and then develop classical theories as an approximation to the more rigorous formulation.
However, I think it is more pedagogically straightforward (and far easier on the student) to
begin with classical models, which are in the widest use by experimentalists and tend to feel
very intuitive to the modern chemist, and move from there to increasingly more complex
theories. In that same vein, early emphasis will be on single-molecule (gas-phase) calcu-
lations followed by a discussion of extensions to include condensed-phase effects. While
the book focuses primarily on the calculation of equilibrium properties, excited states and
reaction dynamics are dealt with as advanced subjects in later chapters.

The quality of a theory is necessarily judged by its comparison to (accurate) physical
measurements. Thus, careful attention is paid to offering comparisons between theory and
experiment for a broad array of physical observables (the first chapter is devoted in part
to enumerating these). In addition, there is some utility in the computation of things which
cannot be observed (e.g., partial atomic charges), and these will also be discussed with
respect to the performance of different levels of theory. However, the best way to develop
a feeling for the scope and utility of various theories is to apply them, and instructors are
encouraged to develop computational problem sets for their students. To assist in that regard,
case studies appear at the end of most chapters illustrating the employ of one or more of
the models most recently presented. The studies are drawn from the chemical literature;
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depending on the level of instruction, reading and discussing the original papers as part of
the class may well be worthwhile, since any synopsis necessarily does away with some of
the original content.

Perversely, perhaps, I do not include in this book specific problems. Indeed, I provide
almost no discussion of such nuts and bolts issues as, for example, how to enter a molec-
ular geometry into a given program. The reason I eschew these undertakings is not that I
think them unimportant, but that computational chemistry software is not particularly well
standardized, and I would like neither to tie the book to a particular code or codes nor
to recapitulate material found in users’ manuals. Furthermore, the hardware and software
available in different venues varies widely, so individual instructors are best equipped to
handle technical issues themselves. With respect to illustrative problems for students, there
are reasonably good archives of such exercises provided either by software vendors as part
of their particular package or developed for computational chemistry courses around the
world. Chemistry 8021 at the University of Minnesota, for example, has several years worth
of problem sets (with answers) available at pollux.chem.umn.edu/8021. Given the pace of
computational chemistry development and of modern publishing, such archives are expected
to offer a more timely range of challenges in any case.

A brief summary of the mathematical notation adopted throughout this text is in order.
Scalar quantities, whether constants or variables, are represented by italic characters. Vectors
and matrices are represented by boldface characters (individual matrix elements are scalar,
however, and thus are represented by italic characters that are indexed by subscript(s) iden-
tifying the particular element). Quantum mechanical operators are represented by italic
characters if they have scalar expectation values and boldface characters if their expec-
tation values are vectors or matrices (or if they are typically constructed as matrices for
computational purposes). The only deliberate exception to the above rules is that quantities
represented by Greek characters typically are made neither italic nor boldface, irrespective
of their scalar or vector/matrix nature.

Finally, as with most textbooks, the total content encompassed herein is such that only
the most masochistic of classes would attempt to go through this book cover to cover in the
context of a typical, semester-long course. My intent in coverage is not to act as a firehose,
but to offer a reasonable degree of flexibility to the instructor in terms of optional topics.
Thus, for instance, Chapters 3 and 11-13 could readily be skipped in courses whose focus is
primarily on the modeling of small- and medium-sized molecular systems. Similarly, courses
with a focus on macromolecular modeling could easily choose to ignore the more advanced
levels of quantum mechanical modeling. And, clearly, time constraints in a typical course
are unlikely to allow the inclusion of more than one of the last two chapters. These practical
points having been made, one can always hope that the eager student, riveted by the content,
will take time to read the rest of the book him- or herself!

Christopher J. Cramer
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What are Theory, Computation,
and Modeling?

1.1 Definition of Terms

A clear definition of terms is critical to the success of all communication. Particularly in the
area of computational chemistry, there is a need to be careful in the nomenclature used to
describe predictive tools, since this often helps clarify what approximations have been made
in the course of a modeling ‘experiment’. For the purposes of this textbook, we will adopt
a specific convention for what distinguishes theory, computation, and modeling.

In general, ‘theory’ is a word most scientists are entirely comfortable with. A theory is
one or more rules that are postulated to govern the behavior of physical systems. Often,
in science at least, such rules are quantitative in nature and expressed in the form of a
mathematical equation. Thus, for example, one has the theory of Einstein that the energy of
a particle, E, is equal to its relativistic mass, m, times the speed of light in a vacuum, c,
squared,

E =mc” (1.

The quantitative nature of scientific theories allows them to be tested by experiment. This
testing is the means by which the applicable range of a theory is elucidated. Thus, for
instance, many theories of classical mechanics prove applicable to macroscopic systems but
break down for very small systems, where one must instead resort to quantum mechanics.
The observation that a theory has limits in its applicability might, at first glance, seem a
sufficient flaw to warrant discarding it. However, if a sufficiently large number of ‘interesting’
systems falls within the range of the theory, practical reasons tend to motivate its continued
use. Of course, such a situation tends to inspire efforts to find a more general theory that is
not subject to the limitations of the original. Thus, for example, classical mechanics can be
viewed as a special case of the more general quantum mechanics in which the presence of
macroscopic masses and velocities leads to a simplification of the governing equations (and
concepts).

Such simplifications of general theories under special circumstances can be key to getting
anything useful done! One would certainly nor want to design the pendulum for a mechanical



