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Preface

This book in discrete mathematics is intended to supply the typical fresh-
man or sophomore in computer science and related disciplines with a first
exposure to the mathematical topics essential to their study of computer
science or digital logic. It also provides students who are preparing for an
advanced-degree program with the background necessary for further study in
theoretical computer science. It can be used in either a one- or a two-semester
course. Written for the student, this text is the synthesis of many years of
experience in teaching this and related courses to students at all undergraduate
levels. It offers a unified treatment of the material outlined in all current
national recommendations on discrete methods and applied algebra. A major
feature of this text is its versatility. Sufficient topics have been included to
accommodate students with varied backgrounds.

Chapter Coverage

Chapters 1 and 2 cover elementary concepts in sets and combinatorics. We
have found that, although most, if not all, authors assume knowledge of these
topics, the typical student needs considerable exposure to them. Applications
relevant to computer science students are initiated in these first chapters.

Chapter 3, on logic, lays the framework for all subsequent material. The
detail with which logic is developed stresses its overwhelming importance.

Chapter 4 expands on the first chapter on set theory. It utilizes the chapter
on logic to further develop concepts in proofs and is an initiation to the topic
of algebraic systems.

Students may find some of the topics in Chapters 1 through 4 somewhat
theoretical in nature. So Chapter 5, “Introduction to Matrix Algebra,” gives
them a necessary “breather” from these theoretical concepts. Although some
authors utilize matrix algebra in graph theory, none of them review this topic.
We have found that many students are completely unfamiliar with matrix
algebra.

Chapters 6 and 7 introduce the student to the concepts of relations and
functions. By studying the numerous examples, students will become com-
fortable with these topics, which are crucial to their understanding of the
remainder of this text.
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Chapter 8 begins with a discussion of how recursion appears in algorithms,
definitions, functions, proofs, etc. Major applications are recurrence relations
and generating functions. Numerous examples of a variety of recurrence
relations are presented in considerable detail in Sections 8.3 and 8.4.

Chapters 9 and 10 are an introduction to graphs and trees. They focus on
the description of basic problems involving graphs and trees and their appli-
cations.

Chapter 11 is a formalization of concepts of algebraic structures that were
introduced in previous chapters. This is done concretely through an intro-
duction to the theory of groups. The chapter culminates in a description of
how the idea of an algebraic structure has been adopted to object-oriented
computer design.

Chapter 12 is a further development of matrix algebra. The first half of the
chapter includes methods for solving systems of equations and how they can
be used to compute matrix inverses. The second half is a development of the
diagonalization process, including a brief introduction to vector spaces. Ap-
plications to recurrence relations and graph theory are given.

In Chapter 13, Boolean algebras are introduced naturally as an algebraic
system, motivated by the similarities of logic and set theory. The focus is on
examples and illustrations, while theory is explored. Logic design is a culmi-
nating application.

Chapter 14 covers the topics of monoids, languages, and finite-state ma-
chines and how they are interrelated.

In Chapter 15, we continue our discussion of groups with a further devel-
opment of the theory and applications that include computations by homo-
morphic images and coding theory.

Chapter 16 is intended to introduce the student to basic concepts of ring and
fields. The key ideas are developed by relying on the student’s knowledge of
high-school algebra. Polynomials, formal power series, and finite fields are
discussed.

Features

Readability. Our students, who we feel are representative of typical under-
graduate computer science students, have found all of the texts that we have
used difficult to read. We believe that this occurs because typical students lack
the background that most authors of discrete mathematics texts assume they
have. The chapters on basic set theory, combinatorics, logic, and matrix
algebra assist students who are weak in these arezs. We have found that time
devoted to these topics is well spent and pays off when more abstract topics
are covered. Another factor that affects readability is the quantity and quality
of examples that are relevant to the material being introduced. By providing
numerous, clear examples, we hope that we have made this material more
accessible to most students.

Applications. Whenever a major theoretical topic is covered, it is rein-
forced with at least one application to computer science so that students are
able to apply key concepts immediately.
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Pascal Notes. Discussions relating to Pascal and other programming lan-
guages appear throughout the text, but are clearly marked so that they can be
avoided, if desired. In many cases, the Pascal Notes should be understandable
to anyone who has had a course in a high-level programming language. We
expect that the Pascal Notes will be of use to many students immediately.
Some of our own students have commented that the Pascal Notes have
affected the way that they write programs.

Coverage. This text is a synthesis of all national guidelines for the discrete
methods/applied algebra sequence. Through our applications-oriented,
hands-on approach, we feel that these guidelines can be followed without
automatically losing a significant percentage of the students because they
cannot follow explanations.

Exercises. With the exception of the two opening chapters, exercises im-
mediately follow most sections. Problem sets for the first two chapters appear
at the end of the chapter. The problem sets are divided into three sections.
Section A consists of problems that all students should be able to do. They
are often of a computational nature. Section B consists of a mixture of
computational and theoretical problems that the average student should find
difficult, but not impossible. Section C consists of challenging problems that
suggest extensions of topics appearing in the text or introduce secondary
topics.

This book ends with solutions and hints to selected exercises, a table of
symbols, a bibliography, and an index.

Suggestions for Classroom Coverage

The material in this book is sufficient to fill two semesters for students who
have a reasonable background in algebra. For a one-semester course, the
instructor could choose from a variety of options to adapt the material to
students’ needs. For example:

Chapters 1, 2, 3, 4, 5, 6, 7, and &: An introductory one-semester
course for the typical student

Chapters 1, 2, 3, 5, 6, 8, 9, and 10: A non-algebraic introduction for the
typical student

Chapters 2, 3, 6, 7, 8, 9, 10, and 13: A non-algebraic approach for more
advanced students

Chapters 4, 6, 7, 8.1, 11, 13, 14, An introductory applied algebra
15, and 16: course for advanced students

Chapter-by-Chapter Comments

Chapters 1 and 2: These chapters have been written for the student who has
no background in sets and elementary combinatorics. Upper-level students
can be assigned these chapters for review.

Chapter 3: Nearly all of this chapter is essential, but care must be taken to
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avoid getting bogged down here. Section 3.5, on mathematical systems, may
be covered lightly if proofs will not be emphasized. Section 3.8, on
quantifiers, may also be covered lightly if the instructor does not habitually
use them.

Chapter 4: Much of this chapter can be skipped if proofs will not be
emphasized. There are two exceptions, however. The laws of set theory
should be examined and compared to the laws of logic, and the concept of a
partition should be discussed. The sections on minsets and duality can be
omitted if Boolean algebras are not included in your course.

Chapter 5: This chapter is written for the student who has no background
in matrix algebra. For many students, it can be used as a reading assignment.

Chapters 6 and 7: These chapters should be covered in their entirety.

Chapter 8: We feel that the first three sections of this chapter are essential
for most students. Unless the focus of the course is algorithmic, Section 8.4
can be completely omitted. We believe that a brief introduction (approxi-
mately three lecture hours) to generating functions (Section 8.5) is essential.

Chapter 9: The first two sections of this chapter should be given as a
reading assignment with minimal classroom discussion (one lecture hour).

Chapter 10: Classroom coverage of this chapter will depend on the
students’ previous exposure to trees in a course such as data structures.

Chapter 11: This chapter is essential to the appropriate coverage of Chap-
ters 12 through 16, any of which can be covered independently.

Chapters 12 through 16: In the typical one-semester course, there may be
time to cover one of these chapters in detail. Nearly all of these chapters can
be covered in a two-semester course. In an applied algebra course, the main
concentration would be on these chapters.
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