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Preface

In this volume, the behaviour of electrons in pure metals, both crystalline
and disordered, and in metallic alloys will be discussed, especially in relation
to the way in which they govern the thermodynamics, and other properties,
of these conducting assemblies.

From the outset, attention will focus on the simplest wave-mechanically
well-defined quantities that govern the properties of metals and alloys.
Paramount among these is the ground-state electron density.

By thereby moving attention away from many complex details of electronic
structure that are found to differ, apparently considerably, between individual
metals built even from chemically similar atoms, we believe that this volume,
although predominantly about theory and concepts, should be particularly
appropriate to the needs of a wide spectrum of workers within the general
area of materials science, and including specifically physical metallurgy.

To further this end, we have avoided using advanced techniques in the
body of the text; occasionally density matrices and Green functions will be
encountered. The basic introductory material with which we have assumed
all readers to be acquainted is: (i) a first course in the properties of matter;
(i) an introductory course in quantum mechanics; and (iii) some modest
knowledge of classical and quantum statistics.

For the reader lacking this background, much of it could be derived from
Kittel’s Introduction to Solid State Physics.' Elementary properties of liquids
are covered in the book by Temperley and Trevena, Liquids and their
Properties,®> while an introduction to quantum mechanics with a flavour
useful for reading our book can still be obtained from the now old work of
Pauling and Wilson Introduction to Quantum Mechanics.®> Coulson’s Valence*
and Pauling’s The Nature of the Chemical Bond® also provide very valuable
background.

The final point we must make concerns decisions as to the coverage of
our book. Although it is fundamentally about electrons, we have felt it
essential, in one chapter, to discuss electron—phonon interaction in relation
to electrical transport in normal metals. Owing to the present excitement
about high-T, superconductors, we have briefly treated superconductivity in
Chapter 8. This, of course, is a topic that remains of great importance in
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metal physics, but to do justice to it would have meant increasing our work
by at least one third of its present size. This, we felt, was undesirable, and
as numerous excellent specialist books have been written on superconductivity
(e.g. Schrieffer’s Superconductivity®), we refer the reader to these.

Of course, it is hardly possible in a work of this kind to avoid some errors
creeping in. We trust these will be solely, and then only occasionally, of detail,
but we should be most grateful to hear from readers who find our book
useful as to how to improve it in the future: either by removing errors or by
clarifying arguments.

Inevitably, we have drawn extensively on the work, and the writings, of
other authors. We trust that we have made explicit and appropriate references
in all cases, but again if we have not in an occasional case then we should
appreciate being told.

Some parts of this book were prepared during several summer visits of
both authors to the International Center for Theoretical Physics (Trieste).
We are grateful to the ICTP for hospitality and support. One of us (J.A.A.)
also acknowledges support from CAICYT of Spain (Grant 3265-83).
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1 Background and outline

The many-electron wavefunction ¥(ry,r,,...,ry) of an N-electron system,
with N ~ 10?3 as in a macroscopic piece of metal, is obviously of utterly
impossible complexity to work with. Therefore it is essential to reduce the
amount of information one must handle, and two approaches to this problem
have emerged historically:

(i) to ascribe to each electron its own personal wavefunction, as in the
self-consistent-field approach initiated by Hartree;' or

(ii) tointegrate out of the probability density ¥¥* as much information as
is feasible to still leave a useful tool from which to construct a theory.

Both of the ideas (i) and (ii) above will play an essential role in this volume.
As far as (i) is concerned, once each electron is given its own wavefunction, the
remaining question centres round the way to construct a many-electron
wavefunction—but now, of course, approximately—from the wavefunctions
of the individual electrons. Hartree simply formed ¥ as the product of the
N one-electron wavefunctions, but this does not satisfy the requirement of a
correct wavefunction for a system of Fermions, namely that the total
wavefunction, now including spin, should be antisymmetric in the interchange
of the coordinates, space and spin, of any pair of electrons. Hartree’s theory
was therefore generalized to the so-called Hartree—Fock theory, in which the
Hartree product wavefunction is properly antisymmetrized. This corresponds
to building ¥ from a single Slater determinant? of one-electron ‘spin-orbitals’,
which are constructed as the space wavefunction for a particular electron
times its spin function, i.e. either o for upward spin or f§ for downward spin.

While such an extension of the Hartree method (provided that the
one-electron wavefunctions are chosen optimally, to include the Fock—Slater
antisymmetrization described above) leads to a significant advance over
Hartree theory for atoms, say, it has proved as a result of long experience
to lead to objectionable results for metals, in that there are major contra-
dictions between the original Hartree—Fock theory and experiment. Thus the
observed linear electronic specific heat at low temperatures is nicely accounted
for by the original Hartree method, but a wrong prediction involving a In T
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dependence is found from Hartree-Fock theory. And there are other, equally
objectionable, predictions.

In the pioneering work of Bohm and Pines,? it was clearly recognized for
the first time that the long-range Coulomb interaction e?/r;; between electrons
at separation r;; had to be screened out in a conducting medium such as a
metal. The essential point they made was that the long-range Coulomb
interactions led to a collective oscillation of the electron density, with a
frequency that had been calculated much earlier by Langmuir in a classical
plasma: namely*

4nnoez>”2’ (L1)

Wpjasma = Wp =
p p m

where n, is the average conduction electron density in the metal and m is
the electron mass. For densities appropriate to metals, this is a very high
frequency, w,~ 10'°s™', to be compared with a characteristic vibrational
frequency of ions, say the Debye frequency which is of the order of 10'*s™ 1.

When the period 2m/w, of the plasma oscillations is multiplied by a
characteristic electron velocity, called the Fermi velocity (cf. Chapter 2) to
obtain a characteristic length, [ say, this turns out for a good conductor like
Cu to correspond to a length of about 1 A. The physical interpretation of
this result, as stressed by Bohm and Pines,? is that, once the collective plasma
effects induced by the long-range Coulomb interaction are accounted for,
the bare Coulomb interaction e?/r;; is very effectively screened:

er e? —7y;
rn—»}ﬁﬂexp( l’). (1.2)

L5 t

Although a result such as (1.2) was already known from the work of Debye
and Hiickel in the theory of strong electrolytes, their theory was classical,
whereas Bohm and Pines were dealing with the completely degenerate
electron assembly formed by the conduction electrons in a metal.

It should be cautioned that (1.2) is a little primitive for such an electron
assembly, as discussed elsewhere in this volume, but the essential idea of
Bohm and Pines is built into the basic approach used throughout this
book. Essentially, when one calculates the expectation value of the total
Hamiltonian H of the metal with respect to the single Slater determinant of
one-electron orbitals, which represents the antisymmetrized Hartree product
discussed above, this leads, beyond the Hartree energy, to energy from the
antisymmetrization; this is the so-called exchange energy. What the work of
Bohm and Pines showed was that, in essence, calculating the exchange energy
with the bare interaction e®/r;; is physically incorrect; the interaction must
be screened. Then the objectionable features of the original Hartree—Fock
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theory when applied to a metal can be completely avoided. In the technical
language of many-electron theory, one should in all essentials treat exchange
(which is a manifestation of Pauli-Principle correlations between parallel-spin
electrons) together with the electronic correlations induced by Coulomb
repulsions, and then one is led back much closer to the predictions of the
original Hartree theory.

Having described the development of Hartree’s idea of personal electron
wavefunctions, referred to as (i) above, how its generalization by Fock and
Slater, while valuable in some contexts, was not useful for metals, and how
Bohm and Pines led the way to the resolution of these difficulties, we return
to the idea (i1).

In its simplest form, one integrates ¥*Y¥ over the coordinates of N — 1
electrons, to obtain, with suitable normalization jn(r)d3r: N, the electron
density n(r). In a perfect metal crystal, not only is this a useful theoretical
tool, as we shall see in Chapter 2, but it is also, at least in principle, an
observable, accessible to experiment by measuring the intensity of X-ray
scattering at the Bragg reflections.

While this theory, in terms of the electron density n(r), was pioneered by
Thomas® and independently by Fermi® in the late 1920s, it was not formally
proved until 1964 by Hohenberg and Kohn” that the ground-state energy,
E say, of an N-electron system is indeed uniquely determined (formally rather
than explicitly, however, to date) by the electron density. This formally
completes the Thomas- Fermi theory, as is discussed at length in Chapter 2.

Slater® recognized in 1951 that the link between the electron-density
description and the Hartree one-electron wavefunction theory would be
fruitful, leading to the so-called Dirac-Slater exchange potential, discussed
in Section 2.3. Again, this description of the link was formally completed,
some 15 years after Slater’s work, by Kohn and Sham.’

Of course, it remains true that such a theory has ‘forced’ the N-electron
problem into a one-body mould or framework. This reflects itself in a whole
variety of ways. Thus, while single-particle Schrédinger equations, with a
local Hartree-like potential V(r), can, at least in principle, generate the
ground-state density n(r) of the fully interacting N-electron assembly, the
electron dynamics are not properly treated. For these, one must generalize
the density n(r) to the first-order density matrix y(r,#’), which is such that its
diagonal clement y(r,r) = n(r); for the precise definition of y from ¥, see
Appendix 2.2. The dynamics, such as is required to interpret Compton
scattering of X-rays from a metal, is in the off-diagonal elements of y(r,#),
and these are not accessible via single-electron Schrédinger equations.

However, as we shall see in this book, many properties of metals and alloys
turn out to be correctly characterized either by the ground-state electron
density n(r) or by single-particle equations of the Hartree type, but with
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a local potential energy V(r) that includes a Hartree term, plus a term in
which exchange and correlation are subsumed together into a ‘correction’
Vexchange + corretation(r) = Vy((r) to the Hartree potential energy. This, in a sense
that will be clear to the reader, embodies the essence of the Bohm Pines
arguments.

However, as has already been anticipated, collective effects manifest
themselves in certain circumstances, as in the energy losses of fast electrons
fired through metal films, the plasmon losses associated with the quanta of
the electron density or plasma oscillations.'® Therefore many-electron effects
remain of great interest, and some of these require a genuine many-electron
theory, not merely an exchange-plus-correlation correction to a one-body
potential.

Until we reach the topic of magnetism (Chapter 9), however, it is true to
say that a great deal of understanding of many properties of crystalline metals
and alloys can be gained from the study of electron states generated by such
a local one-body potential energy V(r). This is the electronic energy band
theory of metals, pioneered by Bloch, Brillouin and Wilson.'! But already
this involves a great deal of detail, and for many purposes, especially relating
to physical metallurgy and materials science, much less detail is required.
Again, one can appeal to the electron-density description. When one writes
the ground-state density n(r), the arguments above show, when developed as
in Chapter 2, that

N
n(r) = Z, YE(r). (1.3)

But, if one wished, one could sum in (1.3) not up to the highest occupied
single-particle energy level (the Fermi energy E,) but only up to energy E:

n(r, E) = ZF YEr)Y,(r), (1.4)
where ¢; are the single-particle energy levels associated with the one-electron
wavefunctions ,(r). Of course, it has not been proved from electron-density
theory that n(r, E) defined in (1.4) has direct physical significance except at
the Fermi level when E = E.. Nevertheless, since in a metal there are occupied
states infinitesimally close to the Fermi level, it seems entirely plausible that
for E near to Eg, n(r, E) will be physically significant. In particular, the local
density of states

V(“'n(ry E)
JE

N(r,E)= (1.5)

is an especially useful quantity in an alloy, whereas in a pure metal the average
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of N(r, E) over the unit cell 2 (the electronic density of states)
N(E):J N(r, E)d3r, (1.6)
¢

is of great value in giving insight into the behaviour of different metals.

The other major area, beyond those already touched on, that is given some
prominence in this volume is that of disordered metals: i.e. metals in the
liquid or the amorphous phase.

We shall see that—though this may seem surprising in that the electron
theory of metals pioneered by Bloch, Brillouin and Wilson was crucially
dependent on the lattice periodicity of the one-body potential V(r)—in fact
many properties of metals are more dependent on the short-range order than
on the long-range crystallinity. Then a lot of the theory developed for
crystalline solids can be reformulated to shift the emphasis away from
periodicity, and this leaves results that, at very least, are relevant to disordered
metals. However, a new feature, Anderson localization''!? of electron states,
does follow as a consequence of disorder.

As well as discussing the above aspects of electron theory, we have not
hesitated to treat semi-empirical theories when these theories lead to insight,
and in particular when they relate to the basic language of the theory of
metals. In Chapter 3, therefore, Miedema’s very successful semi-empirical
treatment of heats of formation of alloys is dealt with. Miedema’s theory,'*
although semi-empirical, is based on the use of parameters deeply rooted in
the theory of metals, namely the electronegativity and the electron density
at the boundary of the atomic cells in the metal. First, the electron density
is the basic tool in the development based on idea (ii) above. On the other
hand, as elaborated in Chapter 3, electronegativity is a chemical concept
introduced by Pauling!? as the power of an atom to attract electrons to itself
in a molecule or compound. Extensive use of this concept has been made in
chemistry to allow the correlation of a substantial number of electronic
properties. On the theoretical side, it will be seen in Chapter 2 that
electron-density theory provides a sound quantum-mechanical foundation
for electronegativity, by identifying this with the negative of the chemical
potential, which is a well-defined quantity entering electron-density theory.

One of the goals of the theory of alloys is to predict the stable phases
observed in the equilibrium phase diagram. This has important implications
in materials science, but it is a formidable task. First-principles theories to
date are not sufficiently accurate for this purpose, although there have been
important advances in recent years, which will be reviewed in Chapter 6.
Consequently, semi-empirical theories are of great value, since simple models
allow one to focus on the few important factors believed to be primarily



