


Eike Best
Raymond Devillers
Maciej Koutny

Petri Net Algebra

With 111 Figures

€Y Springer



Authors

Prof. Dr. Eike Best
Fachbereich Informatik

Carl von Ossietzky Universitit
Oldenburg

26111 Oldenburg, Germany

Eike.Best@informatik.uni-oldenburg.de

Prof. Dr. Raymond Devillers

Faculté des Sciences

Laboratoire d’Informatique Théorique
Université Libre de Bruxelles

1050 Bruxelles, Belgium

rdevil@ulb.ac.be

Prof. Dr. Maciej Koutny
Department of Computing Science
University of Newcastle

Newcastle upon Tyne NE1 7RU, UK.

Maciej.Koutny@newcastle.ac.uk

Series Editors

Prof. Dr. Wilfried Brauer

Institut fiir Informatik,
Technische Universitit Miinchen
Arcisstrafle 21, 80333 Miinchen
Germany

Brauer@informatik.tu-muenchen.de

Prof. Dr. Grzegorz Rozenberg
Leiden Institute

of Advanced Computer Science
University of Leiden

Niels Bohrweg 1, 2333 CA Leiden
The Netherlands

rozenber@liacs.nl

Prof. Dr. Arto Salomaa

Turku Centre for Computer Science
Lemminkiisenkatu 14 A, 20520 Turku
Finland

asalomaa@utu.fi

Library of Congress Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Best, Eike:

Petri net algebra / Eike Best ; Raymond Devillers ; Maciej Koutny. -
Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ; London ;

Milan ; Paris ; Singapore ; Tokyo : Springer, 2001
(Monographs on theoretical computer science)
ISBN 3-540-67398-9

ACM Computing Classification (1998): E3.2, E1.1-2,D.2.2, G.2
ISBN 3-540-67398-9 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, re-
citation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks.
Duplication of this publication or parts thereof is permitted only under the provisions of the
German Copyright Law of September 9, 1965, in its current version, and permission for use must
always be obtained from Springer-Verlag. Violations are liable for prosecution under the German
Copyright Law.

Springer-Verlag Berlin Heidelberg New York,
a member of BertelsmannSpringer Science+Business Media GmbH

© Springer-Verlag Berlin Heidelberg 2001
Printed in Germany

The use of general descriptive names, trademarks, etc. in this publication does not imply, even in
the absence of a specific statement, that such names are exempt from the relevant protective laws
and therefore free for general use.

Production: PRO EDIT GmbH, Heidelberg
Cover Design: design ¢ production GmbH, Heidelberg
Typesetting: Camera ready by authors

Printed on acid-free paper SPIN: 10765212 45/3142/hs -543210



Monographs in Theoretical Computer Science
An EATCS Series

Editors: W. Brauer G.Rozenberg A.Salomaa

On behalf of the European Association
for Theoretical Computer Science (EATCS)

Advisory Board: G. Ausiello M. Broy S. Even
J. Hartmanis N.Jones T.Leighton M. Nivat
C. Papadimitriou D. Scott



Springer
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo



Preface

In modern society services and support provided by computer-based systems
have become ubiquitous and indeed have started to fundamentally alter the
way people conduct their business. Moreover, it has become apparent that
among the great variety of computer technologies available to potential users
a crucial role will be played by concurrent systems. The reason is that many
commonly occurring phenomena and computer applications are highly con-
current: typical examples include control systems, computer networks, digital
hardware, business computing, and multimedia systems. Such systems are
characterised by ever increasing complexity, which results when large num-
bers of concurrently active components interact. This has been recognised
and addressed within the computing science community. In particular, sev-
eral formal models of concurrent systems have been proposed, studied, and
applied 1n practice.

This book brings together two of the most widely used formalisms for de-
scribing and analysing concurrent systems: Petri nets and process algebras.
On the one hand, process algebras allow one to specify and reason about
the design of complex concurrent computing systems by means of algebraic
operators corresponding to common programming constructs. Petri nets, on
the other hand, provide a graphical representation of such systems and an
additional means of verifying their correctness efficiently, as well as a way
of expressing properties related to causality and concurrency in system be-
haviour. The treatment of the structure and semantics of concurrent systems
provided by these two types of models is different, and it is thus virtually
impossible to take full advantage of their overall strengths when they are
used separately.

The idea of combining Petri nets and process algebras can be traced back
to the early 1970s. More directly, this book builds on work carried out by
its authors within two EU-funded research projects. It presents a step-by-
step development of a rigorous framework for the specification and verifica-
tion of concurrent systems, in which Petri nets are treated as composable
objects, and as such are embedded in a general process algebra. Such an al-
gebra is given an automatic Petri net semantics so that net-based verification
techniques, based on structural invariants and causal partial orders, can be
applied. The book contains full proofs and carefully chosen examples, and



V1 Preface

describes several possible directions for further research. A unique aspect is
that the development of the Petri net algebra is handled so as to allow for
further application-oriented extensions and modifications.

The book is primarily aimed at researchers, lecturers, and graduate stu-
dents interested in studying and applying formal methods for concurrent
computing systems. It is self-contained in the sense that no previous knowl-
edge of Petri nets and process algebras is required, although we assume that
the reader is familiar with basic concepts and notions of set theory and graph
theory.

We would like to express our deepest gratitude to our friends and col-
leagues with whom we conducted the work presented in this monograph. In
particular, we would like to thank Javier Esparza, Hans Fleischhack, Bernd
Grahlmann, Jon G. Hall, Richard P. Hopkins, Hanna Klaudel, and Elisabeth
Pelz. We would also like to thank Wilfried Brauer for his support and en-
couragement during the writing of this book, Hans Wossner for his excellent
editorial advice, and an anonymous reviewer for several very useful comments
and suggestions. Last but not least, we would like to thank our respective
families for their unfailing support.

December 2000,

Oldenburg Eike Best
Bruxelles Raymond Devillers
Newcastle upon Tyne Maciej Koutny

This book was typeset with Leslie Lamport’s ¥ TEX document preparation system,
which is itself based on Donald Knuth’s TEX. To produce diagrams, we used the
graphs macro package by Frank Drewes.
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1. Introduction

Computing Science is about building systems. Many of such systems, and an
increasing number of them, are concurrent or distributed. That may be so,
for instance, because more than one processors inhabit a single machine, or
because several machines at different locations are made to cooperate with
each other, or because dedicated processing elements are built into a single
system.

Concurrency theory is sufficiently wide and difficult a subject of Com-
puting Science such that, to this date, no single mathematical formalisation
of it, of which there exist many, can claim to have absolute priority over
others. Much research has gone into exploring individual concurrency theo-
retical approaches and exploiting their particular advantages. The state of
the art is such that many formalisms have been developed to the extent of
being very useful, and actually used, in practice. Other research has gone
into attempting to combine the relative advantages of two or more, originally
perhaps competing, approaches. Such research, it may be hoped, would lay
foundations such that in some not too distant day, a uniform and useful gen-
eralised formalism emerges that comprises the most important advantages of
the present ones.

This book is about combining two widely known and well studied theo-
ries of concurrency: process algebras and Petr: nets. Advantages of process
algebras include the following ones:

e They allow the study of connectives directly related to actual programming
languages.

e They are compositional by definition. Compositionality refers to the ability
of composing larger systems from smaller ones in a structured way.

e They come with a variety of concomitant and derived logics. Such logics
may facilitate reasoning about important properties of systems.

e They come with a variety of algebraic laws. Such laws may be used to
manipulate systems; in particular, to refine them, or to prove them correct
with respect to some specification.
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Advantages of Petri nets are the following, amongst others:

e Petri nets sharply distinguish between states and activities (the latter being
defined as changes of state). This corresponds to the distinction between
places (local states) and transitions (local activities).

e Global states and global activities are not basic notions, but are derived
from their local counterparts. This is very intuitive and suits well the de-
scription of a distributed system as the sum of its local parts. It also facil-
itates the description of concurrent behaviour by partially ordered sets.

e While being satisfactorily formal, Petri nets also come with a graphical
representation which is easy to grasp and has therefore a wide appeal for
practitioners interested in applications.

e By their representation as bipartite graphs, Petri nets have useful links
both to graph theory and to linear algebra. Both links can be exploited for
the verification of systems.

Trying to achieve a full combination of all the advantages just mentioned
would certainly be an ambitious task. This book’s aim 1s more modest in that
it only attempts to forge links between a fundamental (but restricted) class
of Petri nets and a basic (but again restricted) process algebra. However,
the book does attempt to make these links as tight and strong as possible.
The core plan of this book is to investigate the structural and behavioural
aspects of these two basic models, and its main achievement, perhaps, is the
revelation that there is, in fact, an extremely strong equivalence between
them.

The basic process algebraic setup we take as our starting point is the
Petri Box Calculus (PBC [7]), which in itself is a variant of Robin Milner’s
Calculus of Communicating Systems (CCS [80, 81]). There are many other
incarnations of process algebra [2, 54, 59, 62], some of which will be described
in due course in this book. The reason why we prefer CCS as a starting point
is that, of all the mentioned ones, it seems to be most directly useful for
describing the meaning of a concurrent programming language, which is that
by which most concurrent systems are actually implemented.

The basic Petri net theoretic setup we take as our starting point is the
place/transition net model [90]. Again, this is but one of the many net-based
models that have been investigated [15, 63]. However, it is a fundamental one
of which the others are extensions or variations. Also, place/transition nets
share with CCS-like process algebras the property of being rather straightfor-
wardly useful for concurrent programming languages [3] (and, more generally,
for concurrent algorithms [92]).

The idea to combine a process algebra such as CCS with a Petri net model
such as place/transition nets is not new. Perhaps the first author advocating
such an approach was Peter Lauer in [71], attributing it there to Brian Ran-
dell. In the years between this early memorandum and now, many articles
and theses [45], and also several books, have been written with exactly this
connection in mind. In [95], Dirk Taubner gives high-level Petri net semantics
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to a process algebra which is akin to CCS. In [84], Ernst-Riidiger Olderog uses
(place/transition) Petri net semantics of another process algebraic variant as
a stepping stone in the design of concurrent systems. In [62], place/transition
nets are used as semantics of yet another process algebra.

All these setups subtly differ from each other, and they are also limited
in their various individual ways. For instance, recursion is absent in [62], and
is treated nondenotationally and limited to guarded cases in [84, 95]. More
importantly, perhaps, than these differences is the fact that none of the cited
works has demonstrated a very strong equivalence ranging from the set of
operators in each framework to the generated behaviour, and holding in full
generality.! It is the desire for such an equivalence which distinguishes the
present work from the other ones mentioned above, and we achieve it at the
expense of neglecting other valid aims, such as extensions to high-level nets
or to other process-algebraic setups, and also the treatment of substantial
case studies.

In the course of searching for the desired strong connections, the authors
have experienced several surprises. One germ to such a surprise was the sep-
aration, already proposed in PBC, of the CCS synchronisation operator into
parallel composition and (the communication part of the) synchronisation.
This has eventually led to a general classification of all operators into place-
based ones and transition-based ones; note that there needs to be a close
connection between process algebras and Petri nets, just in order to formu-
late such a classification.

An advantage of this classification is that all operators within each class
can be treated similarly. An exception to this rule is recursion, which can be
seen as belonging to the first class, but needs a more involved treatment than
other place-based operators. But, ultimately, all these operators are based
on a single net-theoretic operation: transition refinement. (It may seem odd
to the reader that place-based operators should be based on a transition-
related operation, but the simple explanation is that the environment of a
refined transition, which is a set of places, plays an important role in such a
definition.) Likewise, all operators in the second class, i.e., transition-based
ones, are based on a single operation: relabelling. This is not actually an
indigenous Petri net operation; rather, it refers to the transition labelling of
a net. It can be defined in a sufficiently powerful way so that all operators of
the second class become special instances of relabelling. As a matter of fact,
in a formal treatment, we will integrate refinement and relabelling into only
one operation, of which everything else is just a particular case.

! In one of them, it has in fact been conjectured (see [84], conjecture 3.7.6) that it
is impossible to achieve such an equivalence. This conjecture, along with the fact
that in our setup we do achieve such an equivalence, shows what far-reaching
consequences such subtle and innocent-looking distinctions may have, and what
scope there is for fine tuning and adjusting existing theories until, perhaps, an
optimal one eventually emerges.
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Viewing all operators as incarnations of such a powerful operation leads
to a further generalisation. This is so because refining a transition in a net
can be viewed as a function from nets to nets. For instance, sequential com-
position can be viewed as a very simple two-transition net which takes two
nets as arguments and creates another one (their sequence) as a result. Nets
used in this way as functions from (tuples of) nets to nets will be called
Operator Boxes. Usually, in a process algebra, a handful of operators (each
corresponding to a particular operator box) is considered. However, because
of the generalised setup described above, we may now formulate all our re-
sults in terms of a very large class of operator boxes, all of which could be
interpreted as process-algebraic operators. It is one of the principal results
of this book to state precisely which of such nets can, and which cannot, be
viewed as good operators.

The main criterion for this, in fact, will be whether or not the desired (be-
havioural) equivalence does hold. What we desire is that the entire reachabil-
ity graph, that is, the set of reachable states, together with the information
as to which of them are reachable from others, is exactly the same, whether
one formalises it in terms of process algebra or in terms of nets. In order
to achieve this equivalence, we will employ a net-independent behavioural
semantics of process algebra (so-called SOS semantics, for structured oper-
ational semantics [89]) and compare it with the net-induced semantics. The
equivalence of both, for a large class of operator boxes, is the central result
in Chap.7 of this book.

The structure of the book is as follows:

Chapter 2 is introductory, focussing, in particular, on the above-mentioned
separation between synchronisation and concurrent composition. It also
serves to introduce CCS, Petri nets, PBC, and its SOS semantics. Moreover,
the penultimate section of Chap. 2 contains an intuitive motivation why CCS
and PBC are used for concurrent programming languages. The entire chap-
ter is written in a fairly informal style to make for easy reading. In passing,
Chap. 2 introduces some of the basic notions used throughout the book.

In Chap. 3, the behavioural SOS semantics of PBC is defined. The style of
giving this semantics is adapted to concurrent evolutions, already anticipating
the desired equivalence result.

In Chap.4, a Petri net semantics of PBC is developed. This semantics is
based on a special kind of labelled place/transition nets, which makes them
amenable to being composed. Instead of defining separately, for each opera-
tor, the rules to follow in order to derive nets corresponding to expressions
constructed from it, a general simultaneous refinement and relabelling oper-
ation is defined together with a notion of operator box.

In Chap.5, the treatment of recursive expressions is dealt with using a
general fixpoint theory developed in order to solve recursive equations on
Petri nets.
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In Chap. 6, a general analysis of nets obtained through refinements or re-
cursive equations is conducted, based on the structural notion of S-invariants.
Many interesting results are obtained in this way concerning their behaviour
(such as safeness, or lack of auto-concurrency), together with the facts that
complete evolutions are always finite, and that extending the Petri net se-
mantics to infinite steps would not lead to a substantially increased expressive
power.

In Chap. 7, the SOS and Petri net semantics of Chaps. 3, 4, and 5 are taken
up more directly. In particular, the equivalence of these two approaches to
define the semantics of our algebra is proved formally. Moreover, the proof
is done in such a general and generic setting that it will not be necessary
to re-evaluate the whole theory if, at a later stage, it is desired to introduce
new operators or basic processes, provided some straightforward conditions
are fulfilled.

In Chap.8, an argument is made that PBC, and indeed other process
algebras, are instances of the general framework developed in the previous
chapter.

In Chap.9, the applicability of the theory developed so far is finally
demonstrated by giving a compositional semantics for a concurrent program-
ming language. The emphasis is not so much on the novelty of this approach,
but on the ease with which the translations can be given, and the results
proved. The hope is expressed (and some examples are given that may be
seen as supporting this view) that thanks to such an ease, it will be possible
to use process-algebraic and net-theoretic methods harmoniously side-by-side
in the verification of important properties of algorithms expressed by concur-
rent programs.

Chapter 10 summarises the material covered by this book and looks at the
possible future directions of research, while the Appendix contains solutions
of some selected exercises. Besides references, the book also contains an index
which enables the reader to find definitions and places of use of important
terms and notations.

This work builds on previous work conducted by two European research
projects, DEMON (Esprit Basic Research Action 3148) and CALIBAN (Es-
prit Basic Research Working Group 6067), see (7, 6, 10, 11, 12, 8, 32, 25, 30,
31, 36, 40, 68, 69, 70]; and, later, within the ARC Project 1032 BAT (Box
Algebra with Time). The authors gratefully acknowledge contributions which
are due to many discussions with numerous researchers, in particular with
Javier Esparza, Hans Fleischhack, Bernd Grahlmann, Jon G. Hall, Richard
P. Hopkins, Hanna Klaudel, and Elisabeth Pelz.



