


Physical Principles of Meteorology and Environmental Physics

Global, Synoptic and Micro Scales

David Blake • Robert Robson

Global, Synoptic and Micro Scales

David Blake

The University of Queensland, Australia

Robert Robson

James Cook University, Townsville and The Australian National University, Canberra, Australia

Published by

World Scientific Publishing Co. Pte. Ltd.

5 Toh Tuck Link, Singapore 596224

USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

PHYSICAL PRINCIPLES OF METEOROLOGY AND ENVIRONMENTAL PHYSICS Global, Synoptic and Micro Scales

Copyright © 2008 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

ISBN-13 978-981-281-384-8 ISBN-10 981-281-384-5

Physical Principles of Meteorology and Environmental Physics

Global, Synoptic and Micro Scales

For Josephine and Robert John Robson

试读结束, 需要全本PDF请购买 www.ertongbook.com

About the Authors

David Blake (PhD, University of Queensland) is a physics researcher at the University of Queensland, and managing director of Solar Sells Pty. Ltd., a renewable energy consultancy. Robert Robson (PhD, ANU; Fellow, Royal Meteorological Society; Fellow, American Physical Society) is a physics and meteorology researcher and lecturer at the Australian National University and James Cook University, and a former forecaster with the Australian Bureau of Meteorology.

Preface

Meteorology is generally regarded as a discipline in its own right and is normally taught at universities (if at all) separately from mainstream physics. In general the research literature is divided along similar lines, with some outstanding exceptions to this rule, e.g., Lorenz's 1963 paper in the Journal of the Atmospheric Sciences, which has provided a springboard for the burgeoning field of chaos and nonlinear dynamics. One of the goals of our book is to bring the two fields a little closer, for there has never been a better time to do so.

At the time of writing, the public debate over the global climate has reached a frenzied pitch with the release of the 4th Report of the Intergovernmental Panel on Climate Change (http://www.ipcc.ch/). Moreover, a widespread perception is that water, rather than oil or even terrorism, will be the other main global political issue of the century. Never has it been more important for the scientific community to provide the decision makers with objective and accurate information. Unfortunately the global climate models upon which the IPCC, economists, politicians and others rely to make their decisions, are by their very nature complex and opaque to all but the specialist few. This provides fertile ground for the global warming skeptics, and there is by no means general acceptance of anthropogenic warming, even among meteorologists and climatologists.

This book provides both theoretical and practical grounding in meteorology, with an emphasis on phenomena in the boundary layer, and aims at furnishing either a stand alone course or a firm platform for the reader to proceed with further study in one of the specialist areas, including global climate modeling. The theory component derives from a course of about 40 lectures given at the senior undergraduate and graduate level, and is of a

standard comparable with the Australian Bureau of Meteorology's graduate training course for weather forecasters.

The main practical component concerns a research project measuring ${\rm CO}_2$ exchange between the atmosphere and (a) native tropical rainforest and (b) introduced sugar cane in tropical north-eastern Australia. The aim here is to introduce the reader to experimental techniques and procedures, but there is a particularly important lesson to be learned from the results: during the peak growth phase, it is observed that sugar cane sequestrates more than three times as much carbon dioxide as does rainforest on an average daily basis! This result seems to contradict the widespread belief that clearing rainforest and replacing it with crops is self-evidently a bad thing, but of course one has to take many other factors into account. Whatever its implications for climate modeling might be, it only serves to reinforce our belief that unsubstantiated assumption is never a substitute for hard physics. That, in a nutshell spells out what this book is all about.

David Blake
The University of Queensland, Australia

Robert Robson James Cook University, Townsville and The Australian National University, Canberra, Australia

January, 2008

Acknowledgments

The authors would like to thank Professor Steve Turton and Dr Michael Liddell of James Cook University who provided the equipment used in the experimental component of this work. The authors are also very grateful to Dr. Hank de Wit, of the Australian Bureau of Meteorology, for help with the aerological diagram which accompanies this book. The support of the Queensland Sugar Research and Development Corporation is gratefully acknowledged.

Contents

Ab	out the	e Author	rs	vii
Pre	eface			ix
Ac	knowle	edgment.	s	xi
Lis	st of F	igures		xix
Lis	st of T	Tables		XXV
\mathbf{T}	ieore	etical 1	Foundations	1
1.	The	Big Pict	ture	3
	1.1	Introd	uction	3
	1.2	The A	tmospheric Environment	5
		1.2.1	Composition of the Atmosphere	5
		1.2.2	Vertical Structure of the Atmosphere	7
		1.2.3	The Horizontal Picture	9
		1.2.4	Water in the Atmosphere	9
	1.3	Solar 1	Radiation	11
		1.3.1	Solar Constant	11
		1.3.2	Radiative Equilibrium, Atmospheric Solar Energy	
			Budget	12
	1.4	Estima	ation of Average Terrestrial Temperatures	12
	1.5	Enhan	aced Greenhouse Effect	15
	1.6	Proble	ems for Chapter 1	16
	Prob	lems for	Chapter 1	16

Atmo	ospheric	Thermodynamics and Stability	21		
2.1	Equation	on of State of the Atmosphere	21		
2.2			23		
2.3	Hydros	static Equilibrium, Height Computations	28		
2.4	0.0		31		
2.5			33		
2.6			36		
2.7	Saturat	ted Adiabatic Lapse Rate	39		
2.8			41		
2.9			41		
	2.9.1	Homogeneous Atmosphere	41		
	2.9.2	Isothermal Atmosphere	42		
	2.9.3	Constant Lapse Rate Atmosphere	42		
Prob	lems for	Chapter 2	43		
Air I	Flow on a	a Rotating Earth	47		
3.1	Introdu	action, Equation of Motion	47		
3.2					
3.3		NEW YEAR	52		
3.4			53		
	3.4.1		53		
	3.4.2		55		
3.5	Inertial		56		
	3.5.1	Inertial Flow	56		
	3.5.2		57		
	3.5.3	Geostrophic Flow	58		
	3.5.4		58		
	3.5.5		60		
3.6	Friction		60		
3.7					
	3.7.1		62		
	3.7.2		64		
	3.7.3		65		
Prob	elems for		69		
Dive	rgence, V	Orticity and Circulation	73		
4.1	Equation	on of Continuity	73		
			75		
	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 Prob Air I 3.1 3.2 3.3 3.4 3.5	2.1 Equation 2.2 Atmosphere 2.3 Hydrosphere 2.4 Thermosphere 2.5 Examphere 2.6 Lapse 2.7 Saturate 2.8 Stable 2.9 Model 2.9.1 2.9.2 2.9.3 Problems for Air Flow on a 3.1 Introduction 3.2 Decouphere 3.4 Balance 3.4.1 3.4.2 3.5 Inertiate 3.5.1 3.5.2 3.5.3 3.5.4 3.5.5 3.6 Friction 3.7.1 3.7.2 3.7.3 Problems for Divergence, Value 2.9 Decouphere 3.7.1 3.7.2 3.7.3 Problems for Divergence, Value 2.9 Decouphere 3.7.1 3.7.2 3.7.3 Problems for Divergence, Value 2.9 Decouphere 3.7.1 3.7.2 3.7.3 Problems for Divergence, Value 2.9 Decouphere 3.7.1 3.7.2 3.7.3 Problems for Divergence, Value 2.9 Decouphere 3.7.1 2.7.2 3.7.3 Problems for Divergence, Value 2.9 Decouphere 3.7.1 2.7.2 3.7.3 Problems for Divergence, Value 2.9 Decouphere 3.7.1 2.7.2 3.7.3 Problems for Divergence, Value 2.9 Decouphere 3.7.1 2.7.2 3.7.3 Problems for Divergence, Value 2.9 Decouphere 3.7.1 2.7.2 3.7.3 Problems for Divergence, Value 2.9 Decouphere 3.7.1 2.7.2 3.7.3 Problems for Divergence, Value 2.9 Decouphere 3.7.1 2.7.2 3.7.3 Problems for Divergence, Value 2.9 Decouphere 3.7.2 3.7.3 Problems for Divergence, Value 2.9 Decouphere 3.7.2 3.7.3 Problems for Divergence, Value 2.9 Decouphere 3.7.2 3.7.3 Problems for Divergence 3.7.1 3.7.2 3.7.3 3.7	2.1 Equation of State of the Atmosphere 2.2 Atmospheric Thermodynamics 2.3 Hydrostatic Equilibrium, Height Computations 2.4 Thermodynamic Diagrams 2.5 Examples on the Use of the F160 Diagram 2.6 Lapse Rate and Stability, Adiabatic Lapse Rate 2.7 Saturated Adiabatic Lapse Rate 2.8 Stable Atmosphere, Brunt-Vaisala Frequency 2.9 Model Atmospheres 2.9.1 Homogeneous Atmosphere 2.9.2 Isothermal Atmosphere 2.9.2 Isothermal Atmosphere 2.9.3 Constant Lapse Rate Atmosphere 2.9.3 Constant Lapse Rate Atmosphere Problems for Chapter 2 Air Flow on a Rotating Earth 3.1 Introduction, Equation of Motion 3.2 Decoupling of Vertical and Horizontal Motion 3.3 Geostrophic Approximation 3.4 Balanced Curved Flow: Natural Coordinates 3.4.1 Acceleration in Natural Coordinates 3.4.2 Equation of Motion in Natural Coordinates 3.4.2 Equation of Motion in Natural Coordinates 3.5.1 Inertial, Cyclostrophic and Gradient Flow 3.5.2 Cyclostrophic Flow 3.5.3 Geostrophic Flow 3.5.4 Gradient Flow 3.5.5 Trajectories and Streamlines 3.6 Frictional Effects 3.7 Vertical Variation of the Geostrophic Wind 3.7.1 Isobaric Coordinates 3.7.2 Wind Shear and Thermal Wind Equation 3.7.3 Implications of the Equations Problems for Chapter 3 Divergence, Vorticity and Circulation 4.1 Equation of Continuity		

Contents xv

	4.3	Vorticity and Circulation Theorems	77					
	4.4	The Vorticity Equation and its Implications	79					
	4.5	Potential Vorticity	83					
	4.6	Further Comments on Vorticity	84					
	4.7	Rossby Waves	85					
	Probl	ems for Chapter 4	87					
5.	Boune	oundary Layer Meteorology						
	5.1	Introduction	91					
	5.2	Turbulence in the Atmosphere	91					
	5.3	Turbulent Balance Equation	94					
		5.3.1 Momentum Balance (Equation of Motion)	96					
		5.3.2 Energy Balance	96					
		5.3.3 Moisture Balance Equation	96					
	5.4	Calculation of Vertical Flux; Flux-Gradient						
		Relationships	97					
	5.5	Turbulent Transport Equations	98					
	5.6	Surface Boundary Layer	98					
	5.7	Momentum Flux, Vertical Wind Profile	99					
	5.8	Energy Fluxes at the Earth's Surface	103					
	5.9	Planetary Boundary Layer	107					
		5.9.1 Heat Transfer in the Planetary Boundary Layer .	108					
		5.9.2 Wind in the Planetary Boundary Layer	111					
		5.9.3 Dispersion of Pollutants from an Elevated Source	113					
	5.10	Richardson Number, Obukhov Length	116					
	Prob	lems for Chapter 5	118					
6.	Biom	eteorology, Environmental Biophysics	123					
	6.1	Introduction	123					
	6.2	Metabolism, Maintenance of Body Temperature	124					
	6.3	Molecular Versus Turbulent Transport	125					
	6.4	Modes of Heat Transfer	128					
		6.4.1 Radiation	128					
		6.4.2 Convective Heat Transfer	130					
		6.4.3 Evaporation, Latent Heat Exchange	130					
		6.4.4 Heat Conduction	13					
	6.5	Summary of Formulae and Expression for Total Heat Loss	133					
	6.6	The Importance of Latent Heat: Some Examples	13:					

Physical Principl	es of	Meteorology	and	Environmental	Physics
-------------------	-------	-------------	-----	---------------	---------

xvi

		6.6.1	Energy Expended in Respiration	13^{2}
		6.6.2	Heat Loss from a New-Born Infant	130
	6.7	Inside	the Organism: When Heat Conduction	
		is Imp	ortant	13'
		6.7.1	Temperature Rise in a Working Muscle	137
		6.7.2	Conduction and Convection	139
	6.8	Transp	piration in Plants	14:
		6.8.1	Resistance to Diffusion	141
		6.8.2	Leaf Structure	142
		6.8.3	Diffusion from a Circular Orifice, Perforated Screen	
		6.8.4	Transpiration from Leaves	145
	6.9	Flux V	Versus Temperature, Fact Versus Fiction	146
	Prob	lems for	Chapter 6	148
E)	xperi	ments	in the Tropical Boundary Layer	155
7.	Intro	duction	to the Experiments	157
	7.1	Measu	rements	157
	7.2	A $Brie$	of Survey of Eddy Correlation Measurements	161
		7.2.1	Instrumentation	162
		7.2.2	Topography, Vegetation and Geophysical	102
			Variability	164
	7.3	Practic	cal Considerations	167
				101
8.	Appr	oaches t	to Measurement of Net Ecosystem Exchange	169
	8.1	Introd	uction	169
	8.2	Compa	arison of Flux Measurement Techniques	170
		8.2.1	Flux Gradient Methods	170
		8.2.2	Eddy Correlation Methods	170
	8.3	Appro	aches to NEE Measurement	171
		8.3.1	The Balance Equation	171
		8.3.2	The Reynolds Approach	172
		8.3.3	The WPL Approach	173
		8.3.4	The Lee Approach	176
		8.3.5	Reconciling the WPL and Lee Approaches	178
	8.4	Summa	ary	180
				TOU

Contents	xvii
----------	------

9.	Application of the WPL Method						
9.	9.1 9.2 9.3 9.4 9.5 9.6	Introduction	183 183 183 184 186 188 190 192				
		Length Averaging	192				
	9.7	Summary	193				
10.	Expe	rimental Methods	195				
	10.1	Introduction	195				
	10.2	Instrumentation	196				
		10.2.1 Sonic Anemometer	196				
		10.2.2 Infrared Gas Analyser (IRGA)	197				
		10.2.3 Datalogger	197				
	10.0	10.2.4 Flux Measurement System	197				
	10.3	Calibration	198				
		10.3.1 Sonic Anemometer	198				
	10.4	10.3.2 Infrared Gas Analyser	199				
	10.4	Processing Software	201				
		10.4.1 Fourier Analysis	201				
			203				
	10.5	10.4.3 Analysis Program	203				
	10.5 10.6	Error Analysis	206				
	10.0 10.7	Experimental Sites	208				
	10.7	Summary	209				
11.	Results and Analysis						
	11.1	Introduction	211				
	11.2	Time Series Analysis	212				
		11.2.1 Rainforest	212				
		11.2.2 Sugar Cane	219				
		11.2.3 Summary	223				

11.3	Effects of Ave	eraging Period and Sampling Rate	
	Variations on	Flux Measurements 2	28
	11.3.1 Avera	aging Periods	228
	11.3.2 Samp	ling Rates	229
11.4	Fluxes		231
11.5	Error Analysi	is	239
11.6	Summary of I	onpermient and a second	239
11.7	Main Results		241
11.8		, ,	242
			242
	11.8.2 Energ	50 - I - I - I - I - I - I - I - I - I -	242
			242
		C	243
			243
	11.8.6 Softw	vare	243
Appendix	A Some Use	eful Numerical Values	245
Appendix	B Saturated	l Vapour Density and Pressure of H ₂ O	247
Appendix	C Vector Id	lentities 2	249
Bibliograp	phy	2	251
Reference	cs	:	255
Index		5	257

List of Figures

1.1	Schematic representation of the vertical temperature structure in the lowest 100 km of the atmosphere	8
1.2	Schematic representation of radiative equilibrium in the	0
	Earth-atmosphere system	12
1.3	Average solar radiation budget in the Earth-atmosphere	
	system	13
1.4	Simplified model of radiative transfer processes in the atmosphere	13
1.5	Schematic representation of the three possible radiative equilibrium points for a model absorption coefficient $a(T)$.	
	equinistratin points for a moder absorption coefficient a(1)	19
2.1	Schematic representation of adiabats and isotherms on a	
	$p-\alpha$ diagram	26
2.2	Cartesian coordinate systems used in meteorology	28
2.3	Vertical column of air, showing forces acting on a slab	28
2.4	Graphical method of determination of mean temperature of a	
	layer from observed radiosonde temperature trace	30
2.5	Adiabats, isotherms and isobaric surface on an emagram	32
2.6	Method of calculation of thermodynamic parameters	34
2.7	Method of calculation of lifting condensation level (LCL) and	
	cloud heights for data shown in Table 2.1	35
2.8	Schematic illustration of stability in a simple mechanical	
2.9	system	36
2.9	Illustration of a rising air parcel and environmental lapse rate	
	referred to in the text	37

2.102.11	Four types of plume behaviour under various conditions of stability and instability. At left: broken lines, dry adiabatic lapse rate; full lines, existing lapse rates	45 46
3.1 3.2	Schematic illustration of Buys-Ballots law Model of the Earth showing latitude measured positive in the northern hemisphere, and negative in the southern	48
3.3	hemisphere	49
0.0	parcel	50
3.4	The coordinate system describing curved flow	54
3.5	Calculation of $\delta \hat{s}$	54
3.6	Inertial flow in both hemispheres	56
3.7	(i) $R_t > 0$, $\frac{\partial p}{\partial n} < 0$ (ii) $R_t < 0$	57
3.8	Force balance in the four types of gradient flow: (a) regular	
	low, (b) regular high, (c) anomalous low, (d) anomalous high	59
3.9	Balanced flow in the presence of friction	61
3.10	Schematic representation of two isobaric surfaces in the	
	$ \text{vertical plane } \dots $	63
3.11	Schematic representation of geostrophic flow in relation to height contours on an isobaric surface	63
3.12	Vertical section of the atmosphere showing a layer of air	0.0
	bounded by two isobaric surfaces	66
3.13	Global mean zonal temperature distribution and vertical wind	
9 1 4	shear in the southern hemisphere	67
3.14	Horizontal cold air advection and backing of wind with	
3.15	height	67
3.16	Diagrams for Worked Example	68
3.17	Problem 3.1	69
3.18	Problem 3.6	70
0.10	1 Toblem 5.0	71
4.1	A fluid element with horizontal cross section δA	73
4.2	Schematic representation of vertical columns of air showing	
	successive zones of surface convergence and divergence	76
4.3	Frictional convergence in a northern hemisphere cyclone	77
4.4	Circulation around an arbitrary loop L	77