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Preface

Meteorology is generally regarded as a discipline in its own right and is nor-
mally taught at universities (if at all) separately from mainstream physics.
In general the research literature is divided along similar lines, with some
outstanding exceptions to this rule, e.g., Lorenz’s 1963 paper in the Jour-
nal of the Atmospheric Sciences, which has provided a springboard for the
burgeoning field of chaos and nonlinear dynamics. One of the goals of our
book is to bring the two fields a little closer, for there has never been a
better time to do so.

At the time of writing, the public debate over the global climate has
reached a frenzied pitch with the release of the 4th Report of the Intergov-
ernmental Panel on Climate Change (http://www.ipcc.ch/). Moreover, a
widespread perception is that water, rather than oil or even terrorism, will
be the other main global political issue of the century. Never has it been
more important for the scientific community to provide the decision makers
with objective and accurate information. Unfortunately the global climate
models upon which the IPCC, economists, politicians and others rely to
make their decisions, are by their very nature complex and opaque to all
but the specialist few. This provides fertile ground for the global warm-
ing skeptics, and there is by no means general acceptance of anthropogenic
warming, even among meteorologists and climatologists.

This book provides both theoretical and practical grounding in meteo-
rology, with an emphasis on phenomena in the boundary layer, and aims at
furnishing either a stand alone course or a firm platform for the reader to
proceed with further study in one of the specialist areas, including global
climate modeling. The theory component derives from a course of about 40
lectures given at the senior undergraduate and graduate level, and is of a
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standard comparable with the Australian Bureau of Meteorology’s graduate
training course for weather forecasters.

The main practical component concerns a research project measuring
CO4 exchange between the atmosphere and (a) native tropical rainforest
and (b) introduced sugar cane in tropical north-eastern Australia. The aim
here is to introduce the reader to experimental techniques and procedures,
but there is a particularly important lesson to be learned from the results:
during the peak growth phase, it is observed that sugar cane sequestrates
more than three times as much carbon dioxide as does rainforest on an av-
erage daily basis! This result seems to contradict the widespread belief that
clearing rainforest and replacing it with crops is self-evidently a bad thing,
but of course one has to take many other factors into account. Whatever
its implications for climate modeling might be, it only serves to reinforce
our belief that unsubstantiated assumption is never a substitute for hard
physics. That, in a nutshell spells out what this book is all about.

David Blake
The University of Queensland, Australia

Robert Robson
James Cook University, Townsville and
The Australian National University, Canberra, Australia

January, 2008
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