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Preface

The papers in this volume of the Fields Institute Communications reflect a
broad spectrum of current research activities on the theory and applications of
nonlinear dynamics and evolution equations. They are based on lectures given dur-
ing the International Conference on Nonlinear Dynamics and Evolution Equations
at Memorial University of Newfoundland, St. John’s, NL, Canada, July 6-10, 2004.
The aim of that conference was to bring together leading experts, researchers, and
graduate students for five days of high-level lectures and informal research inter-
actions; this was made possible by generous financial support from the Centre de
recherches mathématiques (CRM), Montréal, the Fields Institute for Research in
Mathematical Sciences, Toronto, the Pacific Institute for the Mathematical Sciences
(PIMS), Vancouver, and the Atlantic Association for Research in the Mathematical

Sciences (AARMS).

This volume contains thirteen invited (and refereed) papers. Nine of these are
survey papers, introducing the reader to, and describing the current state of the
art in, major areas of dynamical systems, ordinary, functional and partial differen-
tial equations, and applications of such equations in the mathematical modelling
of various biological and physical phenomena. These papers are complemented by
four research papers that examine particular problems in the theory of dynamical
systems (asymptotic properties of systems that are comparable to quasi-monotone
systems; smoothness of center manifolds for state-dependent delay differential equa-
tions; dynamics of the asymmetric generalized May-Leonard model of three species
competition; exact Poisson structures on manifolds).

Four of the survey papers deal with various aspects of the theory of partial
differential equations and dynamical systems. Motivated by the facts that many of
the celebrated (nonlinear) PDEs of mathematical physics can be viewed as Hamil-
tonian systems and that solutions of their linearized versions exhibit periodic or
quasi-periodic solutions, Walter Craig (McMaster University, Canada) presents an
overview of some of the techniques and results of KAM-like methods for analyzing
analogous phenomena in solutions to nonlinear PDEs. Norman Dancer (University
of Sydney, Australia) surveys a number of open questions for PDEs with small dif-
fusion, —e?Au = f(u), in various geometries: of interest are results on the number
of solutions and their asymptotic shapes. The contribution by Christiane Rousseau
(Université de Montréal, Canada), on normal forms for germs of analytic families of
planar vector fields unfolding a generic saddle-node or resonant saddle, is concerned
with the case in which the normal forms are not polynomial but analytic and for
which the formal change of coordinates to normal form generically diverges.
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Finally, Radu Saghin (University of Toronto, Canada) and Zhihong Xia (Northwest-
ern University, USA) study generic properties of two particular classes of dynamical
systems, namely symplectic diffeomorphisms and Hamiltonian systems.

Applications in biological sciences and in materials science are surveyed in five
contributions. Two of these papers discuss biological invasions and disease spread:
Julien Arino (University of Manitoba, Canada) and Pauline van den Driessche
(University of Victoria, Canada) look at extensions of continuous time and discrete
space metapopulation models addressing cross infection between several species and
keeping track of the patches in which the species reside, while Stephen Gourley (Uni-
versity of Surrey, UK) and Jianhong Wu (York University, Canada) study nonlocal
diffusive equations that arise in the modelling and analysis of long-term behaviors
of biological and epidemiological systems where individuals move randomly and the
feedback nonlinearity involves time lags.

Predator-prey and competition models are the subjects of the survey by Yihong
Du (University of New England, Australia) and Junping Shi (College of William
and Mary, USA) and the research paper by Gail Wolkowicz (McMaster University,
Canada), respectively. The former presents recent results on diffusive predator-prey
models in spatially heterogeneous environments and then examines the influence of
a protection zone in a particular diffusive model. The paper by Wolkowicz studies
the global dynamics of a Lotka-Volterra system of three species competition by
using a model of a food web in a chemostat involving three species competing for
a single (non-reproducing) nutrient, with one of the competitors also predating on
one of the other two competitors.

Brian Sleeman (University of Leeds, UK) presents an illuminating description of
how mathematical models may be formulated on the basis of the complex biochem-
ical processes involved in the modelling of tumour angiogenesis (the formation of
new blood vessels), and he describes various properties of solutions to such models
(such as local existence and uniqueness, and the development of spikes).

A different field of applications (materials science) is reviewed in the survey
by Peter Bates (Michigan State University, USA). In his discussion of nonlinear
evolution equations arising in materials science, he describes various properties
such as well-posedness, asymptotics, travelling waves or pulses. These systems
represent lattice or nonlocal versions of the Allen-Cahn, Cahn-Hilliard, phase-field,
or Klein-Gordon equations.

The other invited research papers are by Jifa Jiang (Tongji University, China)
who analyzes the asymptotic behavior for systems that are comparable to quasi-
monotone systems; by Tibor Krisztin (University of Szeged, Hungary), on C'-
smoothness of center manifolds for differential equations with state-dependent de-
lay; and by Yingfei Yi (Georgia Institute of Technology, USA) and Xiang Zhang
(Shanghai Jiaotong University, China) who present, among other things, a charac-
terization of exact Poisson structures which are invariant under the flow of a class
of completely integrable systems.



Preface vii

It has been the aim of the editors to create a proceedings volume that may serve
as an important resource, both for new researchers and experts in this promising
area, for many years to come. The editors wish to thank the Fields Institute for
Research in Mathematical Science and its Editorial Board (chaired by Carl Riehm)
for agreeing to include this set of papers in the Fields Institute Communications
series.

Hermann Brunner (Memorial University of Newfoundland)
Xiao-Qiang Zhao (Memorial University of Newfoundland)
Xingfu Zou (University of Western Ontario)
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Abstract. Some continuous time, discrete space, metapopulation mod-
els that have been formulated for disease spread are presented. Motiva-
tion for such a formulation with travel between discrete patches is pre-
sented. A system of 4p ordinary differential equations describes disease
spread in an environment divided into p patches. The basic reproduc-
tion number Ry is calculated, with the disease dying out in each patch
if Ry < 1. If travel is assumed to be independent of disease status, then
numerical results are cited that indicate that for Rg > 1 solutions tend
to an endemic equilibrium with the disease present in each patch. The
system is extended to include cross infection between several species. A
second extension involves keeping track of both the current patch and
the patch in which an individual usually resides. Travel can change
disease spread in a complicated way; it may help the disease to per-
sist or may aid disease extinction. Complexity that can be built into
metapopulation models is illustrated by three case-study examples from
the literature.

1 Motivation for spatial epidemic models

Classical deterministic epidemic models implicitly assume that space is homo-
geneous, and so do not include spatial variation. There are, however, many reasons
why epidemic models should include spatial variation. Firstly, initial conditions of
disease are often heterogeneous, with disease spreading geographically with time.
For example, plague (black death) spread east to west and south to north along the
trade routes of Europe between 1347 and 1350, and fox rabies spread west from the

2000 Mathematics Subject Classification. Primary 92D30; Secondary 34D23.
Research partially supported by NSERC and MITACS.

(©2006 American Mathematical Society



2 Julien Arino and P. van den Driessche

Russian-Polish border in 1940 to reach France by 1968. More recently, West Nile
virus arrived in New York in 1999 and spread to the west coast of North Amer-
ica by 2004. Secondly, the environment is heterogeneous both in a geographical
sense and in a human sense with birth rates, death rates and health care facilities
varying with location. Thirdly, different species have different travel rates, a factor
that is especially important for diseases involving many species (for example, the
foot-and-mouth disease outbreak in the UK in 2001) and for vector transmitted
diseases. For bubonic plague, the vectors, which are fleas, travel quickly over short
distances; whereas the reservoir mammals, which are rodents, travel more slowly
but over longer distances. Mosquitoes and birds, the vectors and reservoirs for West
Nile virus, respectively, have different flight patterns that also depend on season,
topography, and geographic conditions. In the case of rabies, foxes have different
travel patterns when infective. Fourthly, for human diseases, social groupings and
mixing patterns vary with geography and age. This can be illustrated by comparing
humans in a hospital setting with those in isolated communities in Canada’s North
and with children in schools. Currently most humans live in cities and travel along
defined routes. These influence the spatial spread of disease, for example, HIV
spread along highways in the USA during the latter part of the twentieth century,
and SARS in 2003 was spread by air travellers.

Continuous spatial models with continuous time yield partial differential equa-
tions of reaction-diffusion type. For example, such models have been formulated
and analyzed for rabies by Murray and coauthors, see [21], and for West Nile virus
in [18]. Discrete spatial models with continuous time yield systems of ordinary
differential equations, which are metapopulation models involving movement of in-
dividuals between discrete spatial patches. This movement is captured by a digraph
(or a multi-digraph) with the patches as vertices. Such compartmental models have
been discussed for influenza spread due to air travel between cities by Hyman and
LaForce [15] using a model with structure similar to that developed by Rvachev
and Longini [23]. Such models have also been formulated for measles and influenza
by Sattenspiel and coauthors [25, 26], further analyzed by Arino and coauthors
[2, 3, 4, 5], and Wang and coauthors [16, 22, 30, 31, 32]. Here we review some of
these models and survey other metapopulation models in the literature. We focus
in particular on the basic reproduction number, Rg, which is the average number of
secondary cases produced by a single infected introduced into a totally susceptible
population. This parameter Ry is a key concept in the study of infectious diseases
and can aid in guiding measures to control disease. If Ry < 1, then the disease
should die out if introduced at a low level, whereas if Ry > 1, then the disease is
able to invade the population. To calculate Rg, the next generation matrix method
is used, details are given in [10, 29].

We remark that other types of spatial models have also been formulated in the
literature; see, for example, [19, Part 2]. Included there are papers by CIliff [8] on
geographic mapping methods to trace spatial disease spread, Metz and van den
Bosch [20] on velocities of epidemic spread and Durrett [11] on disease spread on a
lattice. Epidemics among a population partitioned into households are considered
by Ball and Lyne [6], disease dynamics in discrete-time patchy environments are
formulated by Castillo-Chavez and Yakubu [9], the rate of spread of endemic infec-
tions using integrodifference equations is investigated by Allen and Ernest [1], and
urban social networks using a bipartite graph are explored by Eubank et al [12].
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Due in part to increasing capacities of computers and to advances in mathemat-
ical analysis, there has been a recent surge of interest in metapopulation models.
We hope that this review, although personal and not exhaustive, will encourage
readers to delve further into the literature and to formulate new metapopulation
models for disease spread.

2 Metapopulation model on p patches

We begin with the formulation of a general metapopulation SEIRS epidemic
model. The structure of our model is based on that of Arino et al. [4], in which
a multi-species epidemic model is constructed with the assumption that travel
rates are independent of disease status. However, our model here is for disease
transmission in one species, but allows for travel rates to depend on disease sta-
tus. To formulate the deterministic model, assume that the environment under
consideration is divided into p patches, which may be cities, geographic regions or
communities. Within each patch conditions are assumed to be homogeneous. The
population in patch ¢, is divided into compartments of susceptible, exposed (latent),
infective and recovered individuals with the number in each compartment denoted
by S;(t), Ei(t), I;(t) and R;(t), respectively, for i = 1,...,p. The total number
of individuals in patch 7 is N;(t) = S;(t) + E;(¢t) + I;(t) + R;(t). The rates of travel
of individuals between patches are assumed to depend on disease status, and indi-
viduals do not change disease status during travel. Let mf}, mg, m{j, mf} denote
the rate of travel from patch j to patch i of susceptible, exposed, infective, recov-
ered individuals, respectively, where m? = mE = mf = mf = 0. This structure
defines a multi-digraph with patches as vertices and arcs given by the travel rates,
which can be represented by the nonnegative matrices M = [m;SJ] , ME = [mg].
M! = [mfj] and MF = [mﬁ]. It is assumed that these matrices are irreducible.

Birth (or input) in patch i is assumed to be into the susceptible class at a rate
A; (N;) > 0 individuals per unit time, and natural death is assumed to be inde-
pendent of disease status with rate constant d; > 0. The disease is assumed to be
transmitted by horizontal incidence 3; (V;) S;1;, thus an average individual makes
3; (N;) N; contacts per unit time. It is reasonable to take (3; (IV;) as a nonnegative
nonincreasing function of N;. Once infected, a susceptible individual harbors an
agent of disease and moves to the exposed compartment, then into the infective
compartment as the individual becomes able to transmit the disease. On recov-
ering from the disease, an individual moves to the recovered compartment, and
then back to the susceptible compartment as disease immunity fades. The period
in the exposed, infective and recovered compartment is taken to be exponentially
distributed with rate constant «;, v;, d;, respectively. Thus 1/a;, 1/v;, 1/9; is the
average period (without accounting for death) of latency, infection, immunity, re-
spectively. For a disease that causes mortality, the death rate constant for infectives
is denoted by &;. The epidemic parameters are assumed to be nonnegative, with
limiting cases giving simpler models. For example, if a disease confers permanent
immunity, then ; = 0 and an SEIR model results. If a disease has a very short
latent period that can be ignored, then ar; — oo (an SIRS model); and if in addition
the period of immunity is so short that it can be ignored, then §; — oo and an SIS
model results. Such a model is appropriate for gonorrhea.
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The above assumptions lead to a system of 4p ordinary differential equations
(ODEs) describing the disease dynamics. For 7 = 1,...,p these equations are

dS, ) P ; P ]
- = Ai (Ni) = Bi (N3) Sil; — diS; + 6: R; + Z mijj = Z; 1n,JS-Z-Si (2.1)
h i=1 =
o / E =, EE 3 'E 2.2
g = Pi(N)Sili — (os +di) i+ Y mEE; =) mEE, (2.2)
Jj=1 j=1
dl; P P
—t = s 2 y I 7. . I )
W’ = CYiE‘i - (f-z + Vi "'— dl) Iz + jZ_;?nijIJ ; Tnjill (23)
dR; P P
dt,, = yl; — (di +8;) R; + z;mf}Rj — EmﬁRi (2.4)
J= j=

P
with initial conditions S;(0) > 0, E;(0), 1;(0), R;(0) > 0, E;(0) + 1,(0) > 0.
i=1

The population of patch ¢, namely N, evolves according to the sum of equations
(2.1)-(2.4). Solutions of (2.1)-(2.4) remain nonnegative with N; positive for all
t > 0. The total population in all patches N = Ny + N, 4 ... + N, satisfies

AN & _
E :2;(14, (Ni)HEiIi—diNi) (20)
i=
The metapopulation model is at equilibrium if the time derivatives in (2.1)-
(2.4) are zero. Patch i is at a disease free equilibrium (DFE) if E; = I; = 0, and
the p-patch model is at a DFE if E; = I; =0 for all i = 1,...,p. Thus at a DFE,
forallt=1,...,p,S; = N, and satisfies

p p
A; (N;) — d;N; + Z m;N; — Z mN; =0 (2.6)
=1 j=1

Assume that (2.6) has a solution that gives the DFE 57 = N, which is unique.
This is certainly true if A; (N;) = d;N; (i.e., birth rate equal to the death rate) and
g; = 0 (i.e., no disease related death) giving a constant total population from (2.5).
Arino et al [4] make these assumptions for a multi-species epidemic model. It is
also true if A; (IV;) = A; as assumed in [24].

Linear stability of the disease free equilibrium can be investigated by using
the next generation matrix [10, 29]. Using the notation of [29], and ordering the
infected variables as Fy, ..., E,, I, ..., I, the matrix of new infections F' and the
matrix of transfer between compartments V' are given in partitioned form by

|0 Fia Vi 0
F= [0 0 ] and V = li_VZI Vgg] (2.7)
»
Here Fi» = diag(3; (NJ)Nr), Vii. = —-MFE + diag | a; +d; +Zmﬁ
j=1

P
Vor = diag (o), Voo = —M' + diag | &, + v + d; + Zm]ﬂ
=1
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Matrices Vi, and Voo are p x p irreducible M-matrices [7] and thus have positive
inverses. The next generation matrix

FioV 'V ViTt FiaV!

-1
FvV— = 0 0

has spectral radius, denoted by p, given by p (FV™!) = p(FiaViy' Va1 Vi), As
shown in [29], the Jacobian matrix of the infected compartments at the DFE,
which is given by F' — V, has all eigenvalues with negative real parts if and only
if p (FVWI) < 1. The number p (FVﬁI) is the basic reproduction number R for
the disease transmission model, thus

Ro=p (FiaVy VailVii'), (2.8)

and the DFE is linearly stable if Ry < 1, but unstable if Ry > 1. If A; (N;) = A;
and 3; (N;) = [;/N; (standard incidence), then a comparison theorem argument
can be used to show that if Ry < 1, then the DFE is globally asymptotically
stable [24]. This extends the results for 2 patches given by [30, Theorem 2.1] for a
constant population. Wang and Zhao [31] assume mass action incidence and show
that population travel in an SIS model can either intensify or reduce the spread
of disease in a metapopulation. Moreover, for this SIS model, the disease persists
for Ry > 1, and if susceptible and infective individuals have the same travel rates,
then there exists a unique, globally attracting endemic equilibrium [16, Theorem
3.1].

3 Travel rates independent of disease status

For mild diseases it may be reasonable to simplify the model of the previous
section by assuming that individuals do not die from disease (g; = 0) and travel
rates are independent of disease status, thus M5 = M¥ = MT = M = M = [m;]
(irreducible). Travel rates are thus specified on a digraph. These assumptions are
made in the multi-species model formulated by Arino et al. [4], in which it is also
assumed that A;(N;) = d;N; and 3;(N;) = 3;/N; (i.e., standard incidence). With
these assumptions the one species model given by equations (2.1)-(2.4) becomes for
t=1;.0.,P

dSe,‘ — d.(N S 3 S?I1 5 3 S - s ¢
P i (V; — i)*liTi+ iRi-l-Zlmij J-—Zl?njis,- (3.1)
j= j=
dE; S S -
-d—tT = /J)z sz - ((li + dl) Ei + Z"n"ijEj — ij.iE,» (32)
j=1 =1
dI, P P
= = B (it d) LY myl =Y md; (3.3)
j=1 j=1
dRi B <
o = wuli—(di+&)R; + myRi =Y myR; (3.4)
j=1 j=1
Summing (3.1)-(3.4) gives
dN, P »
dt :Z"ni_)’Nj _ijiNi (35)

i=1 j=1
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Thus the N; equation uncouples from the epidemic variables. This linear system
p
of equations has coefficient matrix M — diag an_ji which is the negative of
j=1
a singular M-matrix (since each column sum is zero). From (3.5), see also (2.5),
the total population N is constant. Subject to this constraint, it can be shown
that (3.5) has a unique positive equilibrium N; = N that is asymptotically stable
[4, Theorem 3.3]. Thus the disease free equilibrium of (3.1)-(3.4) is given by
(S;. E; I; R;) = (N;,0,0,0) and is unique.

The basic reproduction number R is calculated as in Section 2 with Fis =
diag (3;) and M¥ = M I' = M. The linear stability result for Ry < 1 can be
strengthened to a global result as follows. Since S; < N;, equation (3.2) gives the
inequality

dE
dt

P p
L Bidi— (i + d) B+ Y my By =y my B (3.6)

i=1 =1
For comparison, define a linear system given by (3.6) with equality, namely

dEi
dt

P P
= Bil; — (a; + d;) E; + Z my; Ej — Z m; E;
= =

and by equation (3.3). This system has coefficient matrix F' — V', and so bv the
argument in Section 2, satisfies hm E; =0 and 11111 I; =0 for Ry = p(FV 1) < 1.

Using a comparison theorem [17 Theorem L.5. 4] [28 Theorem B.1] and noting

(3.6), it follows that these limits also hold for the nonlinear system (3.2) and (3.3).

That tlim R; = 0 and llim S; = N follow from (3.4) and (3.1). Thus for Ry < 1,
—00 oo

the disease free equilibrium is globally asymptotically stable and the disease dies
out.

The existence and stability of endemic equilibria if Ry > 1 are open analytical
questions. As in many high dimensional epidemic models, these are hard problems.
It is sometimes possible to prove that the disease is globally uniformly persistent
by appealing to the techniques of persistence theory; see [33].

Arino et al [4, Section 4] state that numerical simulations of (3.1)-(3.4) indicate
that solutions of their metapopulation model specialized to one species on p patches
with Ry > 1 tend to a unique endemic equilibrium with disease present in each
patch. They display [4, Figure 1] solutions in the case of p = 2 patches with
parameter values compatible with influenza that give Rél) = 1.015 and R((]z) =
0.952. With no travel between patches, disease is endemic in patch 1, but dies
out in patch 2.  With small travel rates mjs = mso; = 0.001, equation (2.8)
gives Ry ~ 1.0095 > 1, and the system approaches an epidemic equilibrium in
both patches. However if travel rates are increased to mi; = ms; = 0.05, then
Ro =~ 0.985 < 1 and the system approaches the DFE in both patches. Thus
small travel rates help the disease to persist, whereas slightly higher travel rates
stabilize the DFE. For a single species, the effect of quarantine where the patches
are arranged in a ring is numerically investigated in [5].
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4 Multi-species model

Spatial spread is all the more important for diseases that involve several species,
for example, bubonic plague and West Nile virus. In [4] an SEIR epidemic model for
a population consisting of s species and occupying p spatial patches is considered.
This is extended in [5] to allow for temporary immunity, giving an SEIRS model.
Here, we also allow rates of travel between patches to depend on disease status.
With assumptions as in Section 2 and using standard incidence, the dynamics for
species j = 1,...,s in patch i = 1,...,p is given by the following system of 4sp

equations
dS',‘ . - . Ik.l
= = Au(Ny) - J;ﬂ,—hsﬁ N~ DiSyi+ &R +
me g me 4% (4.1)
g=1
dEj,‘ 1.1
g7 — ZJJ’” N — (ev: +dy4) B + me g Zm E;; (4.2)
' k q=1 =1
I .
1;1 = @yl = (E]‘i + i + dji)lji + ZT?LJ[-iquq — ZTnjqi]j‘i (4.3)
at g=1 q=1
(]R'i
dfj = 5l — (dji + ;i) Rji +meﬂq ia Zm (4.4)
- q=1

where the total population of species j in patch i is denoted by N;; = S;; + Ej; +
I; + Rj;. The parameters are defined similarly to those in Section 2, but now
the first subscript denotes the species, for example, 1/v;; is the average period of
infection for species j in patch i and 3j; is the rate of disease transfer from species
k to species j in patch 1. Each species has its own travel matrices, for example
M]-’ = [nz]’,q] where mJ, denotes the rate of travel of an infective individual of
species j from patch g to patch i. With nonnegative initial conditions having
N;i(0) > 0 the solutions remain nonnegative with Nj;(¢) > 0 for all ¢ > 0.

For a simplified version of (4.1)-(4.4) in which the birth (input) term Aj; (N;;) =
d;jiNji, recovered individuals have permanent immunity (d;; = 0) and travel is
independent of disease status, there is a unique DFE; see [4, Theorem 3.3]. Assume
this is true for (4.1)-(4.4) with S}, = N; at the DFE. Then the basic reproduction
number, Ry, can be calculated by the method used in Section 2. This is illustrated
for the case of two species on three patches. The infected variables are ordered as
Eiv, Eor, Er9, Eos, E3, Eos. 111, 121, 112, Ioo, 113, I53. The nonnegative matrix F has
the form given by (2.7) with Fj5 = G & G2 & G3 where for r = 1,2, 3,

Ny,

G /ju, Ul?r IV,,"
r NI =
Barr = DBazr
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Matrices Vip, Vop and Vas in V' given by (2.7) are now block matrices with each
block being a 2 x 2 diagonal matrix. Writing

All A12 A13
V1 1 = 4421 A22 A23
A31 A32 Aszs

3

the (i,i) entry of Agy is air + dix + D miEqk, and the (7,4) entry of Aj, for j # k
q=1

is —mﬁ,\,. Similarly writing Va; as the block matrix Bji , the (i,i) entry of By is

3
Eik +Yik +dik + Y m.qu and for j # k, the (i,1) entry of Bjy is _mr{ik' The matrix
g=1 :

Vo1 = Cy & Cp @ O3 with C,. having (4,1) entry equal to a,..

In terms of the above matrices, the basic reproduction number Ry is given by
(2.8). The block structure enables Ry to be easily calculated for a given set of
disease parameters. Note that Ry depends explicitly on the travel rates of exposed
and infective individuals, and implicitly (through N},) on the travel rates of sus-
ceptible individuals. In the case in which travel is independent of disease status
and there is no disease death, a comparison theorem argument can be used as in
Section 3 to show that if Ry < 1, then the DFE is globally asymptotically stable;
whereas if Ry > 1, then the DFE is unstable. A ring of patches with one-way travel
is used to model low pathogenecity avian influenza in birds and humans [5].

5 Model including residency patch

Sattenspiel and Dietz [26] introduced a single species, multi-patch model that
describes the travel of individuals, and keeps track of the patch where an individual
is born and usually resides as well as the patch where an individual is at a given
time. This model has subsequently been studied numerically in various contexts,
including the effects of quarantining [27]. We studied this model [2, 3] giving some
analytical results and calculating the basic reproduction number. In this model, if
a resident from patch i travels to patch j then they are assumed to return home to
patch i before traveling to another patch &, i.e., such an individual does not travel
directly from patch j to patch k (for j, k # i). We now extend the SIR model
in [26] by removing this restriction and allowing for such an individual to travel
between two patches that are not their residency patch. The assumption of [26]
may be appropriate for travel between isolated communities; see [25] and references
therein for situations linked to the spread of influenza in the Canadian subarctic.
However, our formulation allows for a wider range of travel patterns.

To formulate our model, let N;;(¢) be the number of residents of patch i who
are present in patch j at time ¢, with S;;(t), I;;(t) and R;;(t) being the number
that are susceptible, infective and recovered, respectively. Matrix M = [mJ,;]
gives the travel rates of susceptible individuals resident in patch ¢ from patch k
to patch j. Similarly M = [m],] and M = [mf] give these rates for infective
and recovered individuals. Taking standard incidence as in previous models, 3;x;
denotes the proportion of adequate contacts in patch j between a susceptible from
patch 7 and an infective from patch & that results in disease transmission and
#; denotes the average number of such contacts in patch j. For all patches, the
recovery rate of infectives is denoted by 7, the loss of immunity rate by 4, birth is
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assumed to occur in the residency patch at rate d and natural death to occur (in

all disease states) at the same rate d. For p patches, the model takes the following
form for i,5 =1,...,p.

i& = di Nik = Z 161!&1 1.z dSH + 51:{.72 + Z',n“kslk o ZTH"]‘" L

dt =1 k=1 k=1
dl;;
dt = ZK/'Lﬂ‘LRT “ (d + ’)/ it + Zm”kl‘;k Zmzkl 1
dR;;
5 - vI;; — (d+0)Ri; + ZmﬁkRik - nggiRii
k=1 k=1
and fori # j
dS;;
dtj = —Zf{][flk] 1] dS” + (5R-LJ + Zmukszk - Zmzkj ij
k=1 k=1
dl.
d;J - Z’”‘Jﬁlkj i N — @+ + meklz’“ Zmukl”
k=1 k=1
dR,; & %
thi = ’yIL] — (d =+ 5)R1J + Z"liR;kRik - ngkR”
k=1 k=1

where N; = z ji, the number present in patch i. Properties of this model remain
=1
to be exploréd.

For the simpler case formulated in [26] in which travel is independent of disease
status and individuals return to their residency patch after traveling to another
patch, some analysis is given in [2, 3] for corresponding SIS and SEIRS models.
These models have a unique DFE and the basic reproduction number is calculated
by the method used in Section 2 with £ and V being block matrices. Numerical
simulations show that a change in travel rates can lead to a bifurcation at Ry = 1;
thus travel can stabilize or destabilize the disease free equilibrium.

6 Other discrete spatial models

We end this survey with a brief description of three other metapopulation
models from the recent literature and we emphasize their novel features. The first is
for a human disease, whereas the last two model specific animal diseases. Together
they illustrate the possible complexity that can be built into patch models. We
hope that these descriptions encourage readers to consult the original papers as
well as to formulate and analyze other metapopulation models that are applicable
to disease spread.

6.1 Spread of influenza. Hyman and LaForce [15] formulate a multi-city
transmission model for the spread of influenza between cities (patches) with the
assumption that people continue to travel when they are infectious and there is no
death due to influenza. Because influenza is more likely to spread in the winter
than in the summer, they assume that the infection rate has a periodic component.
In addition, they introduce a new disease state P in which people have partial



