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Abstract

Let S be a (discrete) semigroup, and let £1(S) be the Banach algebra which
is the semigroup algebra of S. We shall study the structure of this Banach algebra
and of its second dual.

We shall determine exactly when £1(S) is amenable as a Banach algebra, and
shall discuss its amenability constant, showing that there are ‘forbidden values’ for
this constant.

The second dual of £1(S) is the Banach algebra M(BS) of measures on the
Stone-Cech compactification 8S of S, where M (BS) and BS are taken with the
first Arens product O. We shall show that S is finite whenever M (3S) is amenable,
and we shall discuss when M(3S) is weakly amenable. We shall show that the
second dual of L'(G), for G a locally compact group, is weakly amenable if and
only if G is finite.

We shall also discuss left-invariant means on S as elements of the space M (85S),
and determine their supports.

We shall show that, for each weakly cancellative and nearly right cancellative
semigroup S, the topological centre of M(3S) is just £1(S), and so £1(9) is strongly
Arens irregular; indeed, we shall considerably strengthen this result by showing
that, for such semigroups S, there are two-element subsets of 58S \ S that are
determining for the topological centre; for more general semigroups S, there are
finite subsets of 35 \ S with this property.

We have partial results on the radical of the algebras £1(3S) and M(3S).

We shall also discuss analogous results for related spaces such as W AP(S) and
LUC(G).
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CHAPTER 1

Introduction

Our aim in this memoir is to study the algebraic structure of some Banach algebras
which are defined on semigroups and on their compactifications. In particular we
shall study the semigroup algebra £1(S) of a semigroup S and its second dual
algebra; this includes the important special case in which S is a group. Here
21(S) is taken with the convolution product x* and the second dual £(S)” is
taken with respect to the first and second Arens products, O and < ; these second
dual algebras are identified with Banach algebras (M (3S),0) and (M (BS), <),
which are, respectively, the right and left topological semigroups of measures defined
on B3S, the Stone-Cech compactification of S. We shall also study the closed
subalgebras ¢1(3S) of M(3S) and some related Banach algebras.

Much of our work depends on knowledge of the properties of the semigroup
(BS, O), and, in particular, of (8N, O). We wish to stress that (8N, O) is a deep,
subtle, and significant mathematical object, with a distinguished history and about
which there are challenging open questions; we hope to introduce the power of this
semigroup to those primarily interested in Banach algebras. Indeed the questions
that we ask about Banach algebras are often resolved by inspecting the properties
of this semigroup, and sometimes require new results about it. So we also hope
that those primarily interested in topological semigroups will be stimulated by the
somewhat broader questions, arising from Banach algebra theory, that we raise
about (S, O). In brief, we aspire to interest specialists in both Banach algebra
theory and in topological semigroups in our work. For this reason we have tried to
incorporate general background from each of these theories in our exposition in an
attempt to make the work accessible to both communities.

This paper is partially a sequel to the earlier memoir [21]. (For a correction to
[21], see p. 147 of the present work.)

Notation. We recall some notation that will be used throughout; for further details
of all terms used, see [19] and [21].

We shall use elementary properties of ordinal and cardinal numbers as given in
(19, Chapter 1.1], for example. The minimum infinite ordinal is w and the minimum
uncountable ordinal is wy; these ordinals are also cardinals, and are denoted by Ng
and ¥;, respectively, in this case. The cofinality of an ordinal « is cof «; a cardinal
a is regular if cof a = a.

The Continuum Hypothesis (CH) is the assertion that the continuum ¢ = 2%0 is
equal to Nj; this hypothesis is independent of the usual axioms ZFC of set theory.
Results that are claimed only in the theory ZFC + CH are denoted by ‘(CH)’.

Let S be a set. The cardinality S is denoted by |S|, the family of all subsets of
S is P(S), and the family of all finite subsets of S is P;(S). Let k be a cardinal.

1



2 H. G. DALES, A. T.-M. LAU, D. STRAUSS

Then
[S]*={TcS:|T|=k} and [S]<*"={T CS:|T|<k}.

The characteristic function of a subset T' of S is denoted by xr; we set ds = X {5}
for s € S.

We set N={1,2,...}, Z={0,£1,42,...}, and ZT = {0,1,2,...}. The sets
{1,...,n} and {0,1,...,n} are denoted by N,, and Z], respectively. The set of
rational numbers is Q, I = [0,1], and the unit circle and open unit disc in the
complex plane C are denoted by T and D, respectively. The complex conjugate of
z € C is denoted by Z.

Algebras. Let A be an algebra (always over the complex field, C). The product
map is

my : (a,b) —»ab, AxA— A.

The opposite algebra to A is denoted by A°P; this algebra has the product given by
(a,b) — ba, Ax A — A. In the case where A does not have an identity, the algebra
formed by adjoining an identity to A is A# (and A% = A if A has an identity); the
identity of A or A is often denoted by e4.

The centre of A is

3(A)={acA:ab=ba (be A)}.

An idempotent in A is an element p such that p? = p; the family of idempotents
in A is denoted by J(A). For p,q € J(A), set p < q if pg = gp = p, so that (T(A), <)
is a partially ordered set; a minimal idempotent in A is a minimal element of the
set (J(A)\ {0}, <).

Let I be an ideal in an algebra A, and let B be a subalgebra of A such that
A = B@&]1 as a linear space. Then A is the semi-direct product of B and I, written
A=BxI.

Let I be an ideal in an algebra A, and suppose that I has an identity e;. Then
we remark that e; € 3(A). Indeed, for each a € A we have aer,era € I, and so
er(aer) = aer and (eya)er = era. Thus ey € 3(A).

Let A be an algebra. We denote by R4, N4, and Q4 the (Jacobson) radical
of A, the set of nilpotent elements of A, and the set of quasi-nilpotent elements of
A, respectively; the sets R4, N4, and Q4 are defined in [19], but R4 is denoted by
rad A in [19]. We recall that R4 is defined to be the intersection of the maximal
modular left ideals of A, that R4 is an ideal in A, and that A is defined to be
semisimple if R4 = {0}. We always have the trivial inclusions:

RyCQa, NaCQa.

In general, we have R4 ¢ N4 and N4 ¢ Ry; further, neither Q4 nor N4 is
necessarily closed under either addition or multiplication in A. For an ideal [ in A,
we have Ry = I N R4; in the case where A/I is semisimple, we have Ry = R4.

A nilpotent element a € A has index n if n = min{k € N : a* = 0}; a subset
S of A is nil if each element of S is nilpotent; the radical R4 contains each left or
right ideal which is nil.

Let A be an algebra. For subsets S and T" of A, we set

S -T={st:s€S,teT},
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and ST = lin S - T; we write S for § - S; we define S™ inductively by setting
Sntl = §8™ (n € N). The set S is nilpotent if S™ = {0} for some n € N. The
algebra A factors if A= A,

Let A be an algebra, and let a € A. Then a is quasi-invertible if there exists
b € A such that

a+b—ab=a+b—ba=0;

the set of quasi-invertible elements of A is denoted by g-InvA. A subalgebra B of
Ais full if BN g-InvA = ¢-InvB. In the case where A has an identity, the set of
invertible elements of A is denoted by InvA, and the spectrum of an element a € A
is denoted by g 4(a) or a(a), so that

oa(a)={z€C:ze4 —a &Inv A},

if B is a full subalgebra of A and a € B, then opg(a) = c4(a).

A character on an algebra A is a non-zero homomorphism from A onto C; the
collection of characters on A is the character space of A and is denoted by @ 4.
Suppose that ® 4 # (), and take a € A. Then the Gel’fand transform of a is defined
to be @ € C®4, where a(p) = ¢(a) (¢ € ®4); we define the Gel’fand transform of
A as

G:ara, A—C®4,
so that G is a homomorphism.

Let m,n € N, and let S be a set. The collection of m x n matrices with entries
from S is denoted by M., ,(S), with M,,(S) for M, ,,(S) and M,, ,, for M,, ,(C).
In particular, M, is a unital algebra; the matriz units in M,, are denoted by E;;,
so that

EijEk[ = 6j,kEil (i,j, k,l e Nn) s

and the identity matrix in M, is I,, = (d;,;). Let A be an algebra. Then M, (A)
is also an algebra in the obvious way; the matrix (a;;) is identified with the tensor
product Y {E;; ® a;j : i,j € N,}, so that M, (A) is isomorphic to M, ® A. If A is
unital, we regard M, as a subset of M,,(A) by identifying F;; with F;; ® e4. In the
case where A is commutative, the determinant, det a, of an element a € M,,(A) is
defined in the usual way; the element a is invertible in M, (A) if and only if deta
is invertible in A.

Let E be a linear space. The linear span of a subset S of F is denoted by lin S.
Let S and T be subsets of E. Then

S+T={s+t:se€85,teT}.

The linear space of all linear operators from E to a linear space F' is denoted by
L(E, F), and we write L(E) for the space L(E, E). In fact, L(E) is an algebra with
respect to composition of operators, with identity I, the identity operator on E.

Let A be an algebra, and let E be an A-bimodule with respect to operations
(a,z) = a -z and (a,z) — z - a from A x E to E. For subsets S of A and T of E,
set

S T={a-z:a€8,z€T},
and ST =1in S - T. Amap D € L(A,E) is a derivation if
D(ab) = D(a) - b+a - D(b) (a,be A).
For x € E, set
ady, :a—a-z2—z-a, A—>FE.
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Then ad, is a derivation; these are the inner derivations from A to E. For each
p € D4 U {0}, a point derivation at ¢ is a linear functional d on A such that

d(ab) = p(@)d(b) + p(B)d(a) (a,b € A).
Let A be an algebra. Then the space A ® A is an A-bimodule for maps that
satisfy the conditions that a - (b®c) = ab®c and (b®c) - a = bQca for a,b, c € A.
There is a linear map m4 : A ® A — A such that 74(a ® b) = ab (a,b € A).

Suppose that A is unital. Then a diagonal for A is an element u € A® A such that
a-u=u-a (a€A)and ma(u) = eq. For example, let n € N. Then

1 n
n Z E;j ® Ej;
i,j=1
is a diagonal for A = M,,.
Banach spaces. Let F be a Banach space. Then the closed unit ball of radius
r > 0 in E is denoted by Ej,j. The dual space of E is denoted by E’, and the second
dual space is E”; we regard E as a closed subspace of E”. The weak-* topology on
E’ is denoted by o(F’, F), or simply by o when the spaces are clear. The values
of \€ E'at z € F and of ® € E” at A € E’ are denoted by (z, \) and (®, A\),
respectively. The closure of a subset X of E’ in the weak-* topology is X°. Let F
be a linear subspace of E. Then the annihilator F° of F in E’' is
F°={\e€E :{(z,\)=0 (z € F)}.

Let E and F be Banach spaces. Then the space of all bounded linear operators
from E to F is denoted by B(E, F'); B(E, F) is a Banach space with respect to the
operator norm. We write B(E) for B(E, E); the dual of T € B(E, F) is denoted by
T € B(F',E').

We use the notations ¢y, £°°, £? for standard Banach spaces of sequences on N
(where p > 1), and, for example, we write £P for the space C™ with the £P-norm.

The Banach space £1(S). Let S be a non-empty set, and consider the Banach
space £1(S). A generic element of £1(S) has the form

f:Z{asés :s €S},
where
Ifll, = Z{lasl :8s €S} < o0.
The dual space of E :=£1(S) is E’' = £°°(S), with the duality

=Y {f(s)A(s):s€ S} (fEE,A€E).

We shall later identify £°°(S) with C(8S) (see Chapter 5 for more details). The
Banach space £1(S) is identified with the dual space of ¢y (.S), with the above duality.

Let S and T be non-empty sets. The projective tensor product £1(S) & £1(T)
is identified with £1(S x T') by setting

(f@9)(s,t) = f(s)g(t) (s€S,teT)

for f € ¢(S) and g € ¢}(T). Note that, for an element F' = ) a;;0(s, ;) in
€1(S) ®£Y(T), where {(s;, t;) : i,j € N} is a set of distinct points in S x T, we have

(1.1) I1Fl, = IFll, = D o] -

i,7=1
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Continuous functions and measures. Throughout, a locally compact space is
assumed to be Hausdorff, unless we say otherwise.

Let Q be a non-empty, locally compact space. Then we denote by C(Q2) the
algebra (for the pointwise product) of all continuous functions on 2. The support
of f € C(Q) is the set

supp f = {z € 01 f(z) £0}.

We denote by C'B({2) the algebra of bounded, continuous functions on €2, by Coo(2)
the subalgebra of CB(f2) consisting of functions of compact support, and by Co(2)
the subalgebra of C B(2) of functions that vanish at infinity. The uniform norm on
() is denoted by |- |, so that (CB(Q), |- |g) and (Co(£2), | - |,) are uniform algebras,
as in [19]. The space of real-valued functions in C(2) is denoted by Cr(£2), etc.

The space consisting of all complex-valued, regular Borel measures on {2 is
denoted by M (Q); the space of real-valued measures in M(Q2) is Mg(f2), and the
cone of positive measures is M (Q)*. For a Borel subset B of Q and u € M(Q),
we denote the restriction measure by u | B. Let u € M(Q). Then |u| is the
total variation measure corresponding to u, and so |u| € M(Q2)*. By the Jordan
decomposition theorem, each p € M () is a linear combination of four measures in
M(Q)*. The support of u, denoted by supp p, is the complement of the maximal
open subset U of Q such that |u| (U) = 0.

The space M(2) is a Banach space with respect to the total variation norm
| -1, so that

il = 1l () (€ M(2).
The Banach space (M (), || -||) is identified with the dual space of Cp(f2) via the
duality

(s N) = /Q A(s)du(s) (u€ M(Q), A€ Co(@))

(see [19]).
Let u € M(Q2)", and let K be a compact subspace of (2. Recall that

(1.2) p(K) =inf{(u, A) : A€ Cpo(R), A >0, A | K =1}.

In the case where €2 is a compact space, ||u| = () = (u, 1), where 1 denotes the
function constantly equal to 1 on 2.

Let z € Q. Then we identify z with §, € M(Q2)*, where §, is the point mass
at z. It is standard that lin{z : z € Q} is weak-+ dense in M(2). A measure
u € M(Q) is discrete if there is a countable set E such that |u|(Q2\ E) = 0; we
identify the closed subspace of M (Q2) consisting of the discrete measures with £1((2).
A measure p € M () is continuous if p({z}) = 0 (z € Q); the closed subspace
of M () consisting of the continuous measures is denoted by M.(2). The discrete
and continuous components of u € M(f2) are denoted by pg and p., respectively;
we have |||l = ||pall + ||| for each u € M(£2), and so M(Q) = £1(Q2) & M.(2) as
an ¢ 1-direct sum of Banach spaces.

Let K be a compact subspace of 2. Then

I(K) = {A€ Cy(Q) : \| K =0},

so that I(K) is a closed ideal in Cp(€2). We shall identify M (K) with I(K)°, so
that

M(K) = fpeM®): (=0 (eI(K))}
{ue M) |u (\ K) = 0}.



6 H. G. DALES, A. T.-M. LAU, D. STRAUSS

The subspace M (K) is a weak-x closed subspace of M (Q). For each u € M(Q), we
have 11| K € M(K) and 1| (2\K) € M(?\K), and || = | K||+| | (2 \ K)]|.
Thus
M@Q)=M(K)s® M(Q\K)

as an £!-direct sum of Banach spaces.

Let S be a non-empty set, and let E = £1(S), so that the dual of £°°(S) is
E” = M(BS). Set S* = BS\ S, a closed subspace of 85, called the growth of S.
We note that the relative weak-x topology on M (S*) from o is the same as the
topology o(M(S*),C(S*)), and that £1(S*)" = M(S*).
Banach algebras. For the theory of Banach algebras, see [19]. For example, B(E)
is a Banach algebra for each Banach space E, and (C(9), |- |) is a Banach algebra
for each compact space §.

We wish to note a specific convention of the present memoir; it is different from
that in [19]. A Banach algebra is an algebra A which is also a Banach space for a
norm | - || and is such that

labll < [lall[Ib]l ~ (a,b € A).

Now suppose that A has an identity e4; in distinction from [19] and some other
sources, we do not require that ||es|| = 1.

We make the following presumably well-known remark about the norms of
identities in Banach algebras.

PROPOSITION 1.1. Let I be a closed ideal in a Banach algebra A. Suppose that
A/I and I have identities e/ and er, respectively, with HGA/I“ =a and |ef|| = 8.
Then A has an identity ea, and

leall| <a+B+aB.

PRrOOF. Write ¢ : A — A/I for the quotient map. We recall that e; € 3(A).
Take € > 0. Then there exists ag € A with g(ag) = es/r and [lag|| < a +e.

Consider the element e = e; + a9 — ager € A. Then g(e) = e4/; because
g(er) = 0. For each a € A, we have ae —a = ea — a € I, and so

ae —a = ej(ae — a) = ejaey + eraag — aage; — eja =0.

Thus e is the unique identity of A. We have |le|| < a+ 8+ (o + )8 + . This is
true for each € > 0, and so |leal| < a+ 8+ afB. O

Let (A4, |- ||) be a Banach algebra. Then each maximal modular left ideal of A
is closed, the radical R4 is a closed ideal in A, and A/R,4 is a semisimple Banach
algebra, but in general neither Q4 nor N4 is || - ||-closed in A. Again neither Q4
nor N4 is necessarily closed under either addition or multiplication in A. In the
case where A is commutative, we have

NACQAZRAzﬂ{kergo:wECIJA}.

However we may have the equality R4 = Q4 even when A is not commutative.
For example, let So denote the free semigroup on 2 generators, as in Example 3.42,
below, and set A = £1(S;) with convolution product, a non-commutative Banach
algebra. Then Ry = Q4 = {0} [19, Theorem 2.3.14].

Let A be a Banach algebra. A left approzimate identity in A is a net (e,) in
A such that lim, eqa = a (a € A); a bounded left approzimate identity in A is a
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left approximate identity (e,) such that sup, ||| < oco. Similarly, we define a
[bounded] right approzimate identity in A. A [bounded] approzimate identity in A
is a net which is both a [bounded] left approximate identity and a [bounded] right
approximate identity. A Banach algebra which has a bounded left approximate
identity and a bounded right approximate identity has a bounded approximate
identity. By Cohen’s factorization theorem [19, Corollary 2.9.30(i)], a Banach
algebra with a bounded left approximate identity or a bounded right approximate
identity factors.

The Banach algebra A is essential if A2 = A.

Let (A, ] -||) be a Banach algebra. For each a € A, the spectrum o4(a) of a is
non-empty and compact. The spectral radius of a is denoted by v4(a) or v(a); we
have

n”l/’n

va(a) = lim [la"|'/" =sup {je| : z € o(a)} .

Suppose that A is unital, that B is a unital closed subalgebra of A, and that a € B.
Then

(1.3) 8o5(a) C oa(a) C op(a) C oa(a),

where X denotes the union of X and the bounded components of C \ X for a
compact plane set X, and 0X denotes the topological frontier of X with respect to
C.

Each character on a Banach algebra is continuous, and the character space ® 4
of a Banach algebra A is a locally compact space for the relative topology o(4’, A);
the Gel’fand transform

G:A—Cy(®a)

is a continuous homomorphism whenever ® 4 # (). We always have the inclusion
R4 C ker G; if, further, A is commutative, then R4 = ker G. When A is a commu-
tative C*-algebra, the Gel'fand transform is a surjection, and so A = Cy(®4).

Let I be a closed ideal in a Banach algebra A, and let ¢ : A — A/I be the
quotient map. Then ¢’ | ®4,; : ®4/; — P4 is a continuous embedding.

Let A and B be Banach algebras. The projective tensor product (A®B, || - II.:)
of A and B is defined on [19, p. 165]; (A®A, || - ||,,) is itself a Banach algebra. The
map m4 : A® A — A is a continuous linear map such that

ma(a®b) =ab (a,be A);

7 is a homomorphism of algebras when A is commutative.
Let E be a Banach space. Then we regard M,, ,(E) as a Banach space by
taking the norm to be specified by

(1.4) @)l =D {llwisll :i € Ny, j €N} ((€15) € M n(E)) .
In the case where A is a Banach algebra, the algebra M, (A) is a Banach algebra
with respect to this norm; we have ||I,|| = n. However we note that this norm is

different from that given in [19, Example 2.1.18(ii)]; if we identify M, with B(¢2),
say, where p > 1, the norm || - ||, on My, is such that || I,[|, = 1.

The Banach algebras L'(G) and M(G). Let G be a locally compact group.
Then we define the group algebra L'(G) (using the left Haar measure) and the



