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Preface

This book is about mathematical and numerical modeling of processes in contexts
associated with both natural and engineered environmental systems. In its assembly,
I have relied on some very traditional but highly ubiquitous principles from natural
and engineering science—chemical equilibria, reaction kinetics, ideal (and nonideal)
reactor theory, and mass accounting. As necessary to the contexts of interest, I have
incorporated principles from fluid dynamics, soil science, mass transfer, and micro-
bial processes.

Many texts addressing introductory environmental engineering include discussions
of these principles, but in opting to semiquantitatively address specific environmental
contexts, never really apply them. Introductory modeling efforts seldom tread quanti-
tatively beyond situations that are solved by single, explicit relations. This approach is
fully appropriate at the entry level. Broad-based knowledge gained from an introduc-
tory course and text is essential to full appreciation of the portability of principles to
myriad environmental systems. This text is not intended to replace an introductory
environmental engineering textbook but to build on the contextual knowledge gained
through completion of an introductory environmental engineering course.

In Chapter 2, some properties of water important to the understanding and
employment of chemical equilibria are discussed. In Chapter 3, a collection of the
various units describing abundance of components in gas, liquid, and solid systems
is assembled. In Chapter 4, several specific conventions of the law of mass action,
applicable to specific chemical “systems” are detailed. Then in Chapters 5 and 6,
modeling of systems employing Henry’s law and acid/base principles is examined. In
Chapters 7 and 8, modeling of mixing and reactions in ideal reactors is addressed.
These first eight chapters constitute the “basic” portion of this text. These topics and
associated modeling work are appropriate for a third- or fourth-year undergraduate
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Xiv PREFACE

course, beyond the introductory level. I employ MathCAD as a powerful computa-
tional tool to illustrate, in the environmental contexts considered, the power of
modeling in process analysis. In Chapter 9, I have extended the applications of three
nonideal reactor models: completely-mixed flow reactors in series; plug-flow with
dispersion; and segregated flow, beyond the level of treatment found in current texts.
While containing good “food for thought” at the fourth-year undergraduate level,
Chapter 9 is most appropriate for the graduate level.

Traditional water or aquatic chemistry texts introduce and discuss the chemical
equilibria of acids/bases, metal complexes, solubility/dissolution, and oxidation/
reduction. Mention is made of the proton balance, but this powerful tool is most often
discarded or treated cursorily in favor of the seemingly much simpler charge balance.
In fact, for systems that are not infinitely dilute (virtually all real systems) the charge
balance most often fails at the outset. I have extended the application of the proton
balance (or condition) to provide for significant advances in understandings of the
acid- and base-neutralizing capacity of aqueous solutions and both solution—vapor
and solution—solid systems. I have also demonstrated the relative ease with which
nondilute solution principles can be incorporated into chemical equilibrium
modeling.

For modeling of systems, traditional texts most often rely heavily upon simpli-
fying assumptions, leading to graphical or approximate solutions, or upon sophisti-
cated chemical equilibrium modeling software for quantitative description of
chemical equilibria. Some recent texts have begun to chip away at the computational
wall separating pencil/paper/graphical solutions from those involving sophisticated
software but have not made significant headway. No other existing text known to me
addresses, in transparent detail, the process of coupling mathematics with chemical
equilibria and both mass and proton accounting for numerical modeling of chemical
equilibrium systems.

Herein, I employ the general mathematical/numerical worksheet software
MathCAD to occupy the region beyond approximate solutions and encroaching upon
that of sophisticated software. A huge assembly of mathematical capability is avail-
able in a “what you see is what you get” user interface. Key to modeling of chemical
equilibrium systems is ready capability to write user-defined functions, to program
the solution of systems of nonlinear equations, and to create structured-code-like
programs, all entirely visible in printable, portable worksheets. In fact, the vast
majority of work illustrated in examples of this text has been conveniently exported
into the manuscript as captures directly from worksheets. I make few, if any, simpli-
fying assumptions beyond those associated with the first principles used in
the mathematical modeling. The modeling efforts described herein, associated with
the traditional water chemistry principles, are numerically as capable as those of the
sophisticated software but much more flexible. These created models can be used not
only to numerically model the equilibria but also to employ the equilibrium modeling
to assess the consequences of perturbing the systems. Coupled with Chapters 2—6,
Chapters 1012 constitute the “advanced” portion of this text addressing chemical
equilibrium modeling.
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Those who will benefit from reading and studying this text are those who wish to
mathematically and numerically model environmental processes and systems and
who wish to fully understand the connections among the various factors leading to
the results. Practitioners, depending upon their level of fundamental understandings,
would benefit in a manner similar to students. No specific numerical methods skills
are necessary, beyond attention to detail and an understanding that for numerical
solution methods to work, they must be started in some vicinity of the final solution,
assigning initial guesses to all unknowns sought. Although not absolutely necessary,
it is certainly recommended that the reader obtain the MathCAD software and
carefully follow through the worked examples. Such an approach promotes both
understandings of the principles and mathematical modeling as well as capability for
implementation of numeric solutions.

HENRY V. MoOTT

Additional MathCAD files that accompany this text are available at booksupport.
wiley.com by entering ISBN 9781118115015.

Additionally adopters of the text can obtain the solutions manual to the text by
going to the books landing page at www.wiley.com and requesting the solutions
manual.
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Chapter

Introductory Remarks

1.1 PERSPECTIVE

From the outset, let us make no mistakes about the purpose and content of this text-
book. The main title—Environmental Process Analysis—suggests that we will ana-
lyze processes. The targeted processes are those operative homogeneously in aqueous
solutions, involving the gas—water interface, and involving the water—solid interface.
Understandings of the behavior of environmental systems can arise from examination
of both natural or engineered processes under equilibrium or near-equilibrium condi-
tions. The effects of perturbations on systems can be determined using the initial and
predicted final equilibrium conditions. In addition, understandings can arise from
examination of the progress of such processes under transient or near (quasi) steady-
state conditions. Then, Environmental Process Analysis is the examination of the
processes operative in conjunction with perturbations of environmental systems,
either natural or engineered, arising mostly from actions of our society. Certain of
these perturbations beget negative consequences associated with actions that, while
well-intentioned, contribute to the detriment of an environmental system. Others are
intended to positively affect a compromised natural system or to implement a desired
outcome within the context of an engineered system. The subtitle—Principles and
Modeling—suggests that we will employ appropriate principles, develop models in
support of our analyses, and employ these models to predict the outcomes from
intended or unintended perturbations. Modeling has three distinct levels. Conceptual
modeling involves identifying, understanding, and interrelating processes operative
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