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NEW DIRECTIONS IN LINEAR ACOUSTICS
AND VIBRATION

The field of acoustics is of immense industrial and scientific importance. The
subject is built on the foundations of linear acoustics, which is widely re-
garded as so mature that it is fully encapsulated in the physics texts of the
1950s. This view was changed by developments in physics such as the study of
quantum chaos. Developments in physics throughout the last four decades,
often equally applicable to both quantum and linear acoustic problems but
overwhelmingly more often expressed in the language of the former, have
explored this. There is a significant new amount of theory that can be used to
address problems in linear acoustics and vibration, but only a small amount
of reported work does so. This book is an attempt to bridge the gap be-
tween theoreticians and practitioners, as well as the gap between quantum
and acoustic. Tutorial chapters provide introductions to each of the major
aspects of the physical theory and are written using the appropriate termi-
nology of the acoustical community. The book will act as a quick-start guide
to the new methods while providing a wide-ranging introduction to the phys-
ical concepts.

Matthew Wright is a senior lecturer in Acoustics at the Institute of Sound
and Vibration Research (ISVR). His B.Eng. was in engineering acoustics
and vibration, and his Ph.D. was in Volterra series characterization and
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Foreword

Michael Berry

H. H. Wills Physics Laboratory, University of Bristol, Bristol, UK

In the early 1970s, Martin Gutzwiller and Roger Balian and Claude Bloch described
quantum spectra in terms of classical periodic orbits, and in the mid 1970s it became
clear that the random matrix theory devised for nuclear physics would also describe
the statistics of quantum energy levels in classically chaotic systems. It seemed ob-
vious even then that these two great ideas would find application in acoustics, but
it has taken more than three decades for this insight to be fully implemented. The
chapters in this fine collection provide abundant demonstration of the continuing
fertility, in the understanding of acoustic spectra, of periodic orbit theory and the
statistical approach. The editors’ kind invitation to me to write this foreword pro-
vides an opportunity to make a remark about each of these two themes.

First, here is a simple argument for periodic orbit theory being the uniquely
appropriate tool for describing the acoustics of rooms. The reason for confining mu-
sic and speech within auditoriums — at least in climates where there is no need to
protect listeners from the weather — is to prevent sound from being attentuated by
radiating into the open air. But if the confinement were perfect, that is, if the walls of
the room were completely reflecting, sounds would reverberate forever and get con-
fused. To avoid these extremes, the walls in a real room must be partially absorbing.
This has the effect of converting the discrete eigenvalues with perfectly reflecting
walls into resonances. I will argue that for real rooms the width of resonances usu-
ally exceeds their spacing. This is important because it casts doubt on the usefulness
of the concept of an individual mode in assessing the acoustic response of rooms; a
smoothed description of the spectrum seems preferable. But smoothing is precisely
what periodic orbit theory naturally describes. When there is no absorption, the
contributions from the long periodic orbits make the convergence of the sum prob-
lematic, frustrating the direct calculation of individual eigenvalues, for example, in
quantum chaology. Absorption attentuates the long orbits, and the oscillatory con-
tributions from few shortest orbits are sufficient to describe the acoustic response.
But these few orbits are important: the crudest smoothing, based simply on the av-
erage spectral density, obliterates all the spectral oscillations and fails to capture the
characteristics of most real rooms.

To assess the significance of absorption, start from the Weyl counting formula
for the number N of modes with frequencies less than f, for a room of volume L3:
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In the presence of absorption, modeled approximately by an exponential amplitude

decay time T, that is, intensity ~ exp(—2¢/T'), the resonance width corresponds to
a frequency broadening,

1
Af = T
Thus, incorporating the reverberation time g, corresponding to 60-dB intensity
reduction, that is, T = Ty /3 log, 10, the number AN of modes smoothed over by
the broadening is
L3 f2

AN = 6log, 1063_7%6'
For estimates, we can choose the frequency middle A (f = 440Hz). Then, for
a small auditorium with L = 6 m, and a reverberation time 7Tz = 0.7s, AN ~ 23,
which is unexpectedly large for such a small room. For the Albert Hall in London,
where the effective L ~ 60m, and taking Tgo = 2s, AN ~ 8,200. These estimates
strongly suggest that there is little sense in studying individual modes.

Second, here is an unusual application of spectral statistics from 1993, inspired
by a visit to Loughborough University, where I talked about quantum chaos and
mentioned that the ideas could be usefully applied in acoustics. Afterward, Robert
Perrin showed me his measurements (Perrin et al. 1983) of eigenfrequencies of one
English church bell, ranging from 292.72 Hz — the lowest mode, called the hum,
through the first few harmonics, with their traditional names Fundamental, Tierce,
Quint, Nominal, Twister, Superquint — up to the 134th frequency of 9,285 Hz. This
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provided sufficient data to make a first attempt to understand the frequency spacings
distribution.

I did this in two ways. First, taking the whole set of 134 frequencies, unfolding
them by fitting the counting function (spectral staircase) to a cubic function, and
then calculating the 133 spacings, normalized to unit mean. The resulting cumula-
tive spacings distribution C(S) = fraction of spacings less than S, fits the Poisson
distribution 1 — exp(—S) reasonably well (the thin and dashed curves in the figure).
This is not surprising because the bell has approximate rotation symmetry, and the
whole set of frequencies conflates subsets with different numbers / of nodal merid-
ians (“angular momentum quantum number”). Fortunately the value of / for each
frequency was given; / ranged from 0 to 28, but only the subsets with 0 </ < 10 in-
cluded sufficient frequencies to generate sensible statistics. In the second procedure,
I unfolded these subsets separately and conflated the spacings afterwards, thereby
generating the heavy curve in the figure. This is better fitted to the Wigner cumula-
tive distribution 1 — exp(—S5?/4) (the dotted curve in the figure), indicating strong
repulsion of neighboring frequencies in each /-subset. The precise fit is not impor-
tant because the Wigner distribution should apply when the ray geodesics on the
bell — “classical paths” — are chaotic, whereas the vibrations of the bell, regarded as
a thin elastic sheet, are probably integrable, with frequencies given by the modes of
a one-dimensional “radial” equation, albeit of fourth order.

Reference

Perrin, R., Charnley, T. & DePont, L. (1983), “Normal modes of the modern English
church bell,” J. Sound. Vib. 90, 29-49.
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Introduction

Matthew Wright and Richard Weaver

This book has some of its genesis in the, possibly apocryphal, story that at an acous-
tics conference in the late 1980s a certain distinguished professor, tiring of the pro-
ceedings, turned to the assembled researchers and announced

Listen! If what you’re doing isn’t nonlinear or transonic, then don’t bother! It’s all been
done!

Certainly it has become easy to think of linear acoustics as essentially completed.
After all, classic texts such as Morse and Feshbach (1953) give admirably thorough
expositions of very general techniques, particularly those based on Green’s func-
tions. Cases described by coordinate systems in which the governing equations are
separable are extensively tabulated and admit analytic solutions. The alternative is
to employ numerical methods, many of them also based on Green'’s functions, which
work in arbitrarily complex geometries. There is perhaps a perception that notwith-
standing a host of important applied problems, there are no fundamental issues re-
maining in linear acoustics. Increased understanding of the richness and complexity
of nonlinear problems with the explosion of interest in chaos only serves to make
linear systems seem “done and dusted” in comparison.

And yet this picture is overly dismissive. A solution of a linear differential equa-
tion depends nonlinearly on its coefficients and the shape of the boundary. The
dependence is all the richer if those coefficients are random or if boundary reflec-
tions are defocusing. Developments in physics throughout the last four decades,
often equally applicable to both quantum and linear acoustic problems, but over-
whelmingly more often expressed in the language of the former, have explored this.
More than that they have provided a new way of thinking about such things. We
have been impressed at the significant new body of theory that can be used to ad-
dress problems in linear acoustics and vibration, although also disappointed at the
small amount of reported work that does so. This book is an attempt to bridge the
gap between theoreticians and practitioners, as well as the gap between quantum
and acoustic, a gap that is mostly terminological but should nevertheless not be un-
derestimated. Our hope is that acousticians and vibration engineers who wish to
see what can be done with these new tools will find in this book a comprehensible
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introduction and that physicists may also learn what problems might usefully be
addressed.

So what is on offer? We would like to take the reader on a short guided tour of
the terrain. We begin with what is known as the semiclassical trace formula (Chap-
ter 1), which expresses the modal density of a closed, lossless enclosure (membrane
or cavity) in terms of its periodic orbits, closed internal ray paths that repeat indef-
initely. As a way to determine eigenvalues (let alone response to arbitrary excita-
tions) it cannot compete with the numerical techniques that have been refined for
use in engineering (such as finite elements) or physics (such as plane-wave decom-
position); its significance lies in the fact that it provides an explicit link between the
shape of an enclosure and its acoustic characteristics, both in an average sense (via
the Weyl series) and at the level of individual eigenvalues, and in a way that doesn’t
depend on separability.

This connection is important because for many shapes the periodic orbits are
unstable and the ray paths are chaotic, the implications of which are explored in
Chapter 2. It can be disconcerting to find chaos having such a profound influence on
linear systems. This is due to the nonlinearity of ray motion in the high-frequency
limit, and the study of the effects of this on the finite-frequency wave motion has
come to be known as quantum chaology or (despite linguistic objections) quantum
chaos. It used to be easy to imagine that almost all ordinary differential equations
had well-behaved, predictable solutions because almost all the ones in books did.
That misapprehension was shattered by the explosion of awareness about chaos. In
the same way it is easy to fall into the trap of thinking that modeshapes and natu-
ral frequencies are as simple and regular in arbitrary shapes as those of the simple
textbook examples used to teach the subject. They are not, and for very similar
reasons.

One of the consequences of chaotic ray motion is that eigenfunctions often re-
semble superpositions of Gaussian random waves, the properties of which are ex-
plored in more detail in Chapter 4. Those that do not are referred to as “scarred
modes”; Chapter 5 presents an ingenious formulation that allows the eigenfunc-
tions to be represented with impressive efficiency in a basis built out of deliberately
constructed scar functions. Of course acousticians rarely encounter truly lossless
systems in practice; so some of the implications of opening the enclosure are ex-
plored in Chapter 6. And in Chapter 7 the central result of the periodic orbit theory
is re-derived in a form suitable for elasticity so as to expand the range of possible
applications.

Before that, however, we introduce the second major theme of this book: ran-
dom matrix theory. The study of the statistics of the eigenvalues of ensembles of
matrices whose elements are random variables and exhibit a particular symme-
try began in nuclear physics as an exploration of the conjecture that a sufficiently
complex system might have properties statistically similar to those of a random
Hamiltonian. Modern computational capabilities have made it easier to test con-
jectures and confirm analytic results. For example, the fact that the normalized
spacings of the eigenvalues of a large Gaussian Orthogonal matrix are close to
the Rayleigh distribution (obeyed exactly by an ensemble of pairs of eigenvalues
of 2 x 2 Gaussian orthogonal matrices) can be shown using less than 10 lines of
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MATLAB! and can be computed in a few seconds. Chapter 3 introduces the theory
that allows such predictions and, as its name implies, explores why such an approach
should be so effective in describing the behavior of the wave-bearing and vibrating
systems we are considering here.

Our third theme, complexity does not get a chapter to itself or even an index
entry. Instead it is embedded throughout the book in the richness of the behavior of
simple systems and the diversity of applications in the later chapters. Each reader
will make their own connections between the various topics here, but one striking
example is worth noting here: how in a multitude of contexts “the part contains the
whole.” Just as each cell of an organism contains the DNA of the whole being, a
few short periodic orbits contain information about a large part of the eigenstruc-
ture; in seismology and underwater acoustics a short part of a time history reveals
information about the whole system.

Subsequent chapters survey several applied topics related in varying degrees
to the earlier chapters. Inasmuch as multiple scattering plays such a recurrent and
important role in mesoscopics (the subject of Chapter 8), we also include a review
of the, often too obscure to the non-initiate, diagrammatic methods for the theory
of randomly scattered acoustics in Chapter 9. The surprising and highly applicable
results of the theory of time-reversed waves are explored in Chapter 10 with partic-
ular reference to the themes of this book, which have led to important applications
in ultrasonics.

Chapter 11 shows the relevance of ray chaos for long-range propagation in the
ocean, whereas Chapter 12 demonstrates applications in seismology. Chapter 13
shows how random matrix theory can be applied to structural acoustics and vibra-
tions, whereas Chapter 14 explains an alternative random matrix theory approach
to the problem of estimating the likely variation in response that results from the
inevitable small variations that arise in manufacturing.

It is impossible in a book of practical length to cover all the modern applications
of these ideas that we might have, and we apologize to those who have noted holes
in our coverage. Perhaps there will be a need for another book.

As editors we wish to thank the authors and the publishers for their patience
during the unfortunately long time it has taken to turn their contributions into this
book. We express our gratitude to all the publishers who granted permission for
the chapter authors to reuse figures from their published articles without payment,
and our greater gratitude to those who provided it as a matter of policy without
being asked. We have tried to attribute all reused figures; if we have inadvertently
failed to do so we would be grateful to be informed and will endeavor to correct the

T For the avoidance of doubt they are as follows:

= 2000;

= randn(n);

= eig((A + A’)/2);

s = diff(E).*real(sqrt(2*n — E(1:n=1)."2)/pi);

[N,x] = hist(s,40);

bar(x,N/n/(x(2) — x(1)))

hold on
plot(x,(pi/2)*x.*exp((—=pi/4)*x."2), 'r", " LineWidth’,2)
hold off

m>» =
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oversight in future editions if there are any. We also wish to thank the organizers
of the 2005 Summer School on Chaotic and Random Wave Scattering at the Centro
International de Ciencias A. C. in Cuernavaca, at which the idea for this book was
born when we accidentally got separated from the rest of our party while exploring
the pyramids of Xochicalco and their notable acoustics.

Matthew Wright acknowledges the support provided by an EPSRC Advanced
Research Fellowship during this project and thanks his colleagues at ISVR and in
particular Chris Howls of the School of Mathematics for useful discussions and Car-
olyn and David for their tolerance and understanding. Richard Weaver thanks the
US National Science Foundation for support from grant 28096. Olivier Legrand and
Fabrice Mortessagne thank Valérie Doya for useful criticism and careful reading of
the manuscript. Niels Sgndergaard thanks Gregor Tanner for valuable discussions.
Joseph Turner and Goutam Ghoshal gratefully acknowledge the financial support
of the US Department of Energy, the National Science Foundation, and the Fed-
eral Railroad Administration. Steven Tomsovic and Michael Brown thank Javier
Beron-Vera, Nicholas Cerruti, Katherine Hegewisch, Irina Rypina, and Ilya Udovy-
dchenkov for the benefit of many discussions relating to the material presented and
gratefully acknowledge support from the US National Science Foundation, grants
PHY-0555301 (ST) and CMG-0417425 (MB), and Code 321 of the Office of Naval
Research (MB).



n The Semiclassical Trace Formula

Matthew Wright

Institute of Sound and Vibration Research, University of Southampton, UK

1.1 Introduction

For a two-dimensional enclosure, such as a membrane or the cross section of an in-
finitely long duct, those with the very simplest shapes (circles, rectangles, spheres,
boxes, etc.) with simple uniform boundary conditions, the modes and natural fre-
quencies can be determined analytically. For any other shape they may be de-
termined numerically by a range of mature numerical techniques of which finite
element and boundary element analyses are the best known and the most widely
studied. Knowing how to calculate the modes and natural frequencies for any partic-
ular shape, however, is not the same as understanding how those modes and natural
frequencies depend on the shape. Suppose, for example, that we wish to improve the
design of a component by optimizing some quantity such as weight, while leaving its
natural frequencies unchanged. In the course of such an optimization changes will
be made to the shape, whereupon the process of calculating the modes and natural
frequencies must begin all over again; at best, part of the mesh can be re-used. Such
an analysis cannot tell us where effort can be most or least profitably concentrated.

It turns out that the shapes that can be analyzed are (for good reason) quite
untypical compared with arbitrary shapes. The situation mirrors the one that used
to prevail in the study of dynamical systems, where linear differential equations
were most widely studied because of their solubility, and the fact that other sys-
tems showed radically different qualitative behavior was, for a time, ignored. In
both cases the overlooked feature is chaos, but in the case of acoustic morphology
the phenomenon is known as quantum chaos. Despite its name, this phenomenon
can be exhibited by large-scale systems such as acoustical resonators, whose gov-
erning equations are entirely linear. It arises when a ray path is unstable to small
perturbations and displays strong sensitivity to initial conditions.

Several surveys (Berry 1987, Guhr et al. 1998, Galdi et al. 2005, Kuhl et al. 2005)
and books (Gutzwiller 1990, Ott 1993, Brack & Bhaduri 1997, Stockmann 1999,
Richter 2000, Haake 2001, Nakamura & Harayama 2004, Reichl 2004, Cvitanovié
et al. 2005) on aspects of this subject have become available in recent years, but these
are variously intended for physicists, mathematicians, and electronic engineers. The
theory of periodic orbits, and of quantum chaos, is applicable to a far greater range
of areas than just acoustics, and naturally these texts span that range.



The Semiclassical Trace Formula

1.2 Introductory Examples

1.2.1 Modes in a Rectangular Enclosure

The rectangle is perhaps the simplest case to study because an explicit formula exists
for its natural frequencies. From here on we shall work with wavenumber rather
than frequency, and so we shall use the equation for the eigenwavenumbers of a
rectangle with sides a1, a:

2 P 1/2
knm=n|—+— , 1.1
e (24) "
where the indices n and m run 0, 1, 2, ... for Neumann boundary conditions and
1,2, 3, ... for Dirichlet conditions. The spectral density of this system is defined as
p(k) =" 8(k — knm) (12)
n.m
and the modecount as
k
N(k) = / p(k')dk' =" H(k — knm), (1.3)
0 n,m

where H is the Heaviside function. We shall now show how alternative, series-form
expressions for p(k) and N(k) can be obtained.
The delta functions in (1.2) can be written as the limit of a Gaussian function

1
8(k — knm) = }E% T e~ (k—knm)*/4t (1.4)

We can therefore write the spectral density function in the form

2
- 2/ 2+m2/2 /4
=33 iy e b TR 1 0.9
n=1 m=1

The Poisson formula for a double sum,

ZZ f(n,m) = Z Z // f(ny, np)eiMim+em) 4y dp,

n=0 m=0 My=—00 Mh=—00

+ = / fm, 0)e” Mmidn,
(1.6)

Z / f(O n2)627r1M2n2dn2

Mz -0

+Zf(0’ 0).

can be applied to (1.5). We shall take each term separately, denoting them Fy, F,,
F3, Fy.
The expression for F; can be integrated by making the substitutions
ar ayr

n = — cosé, n; = —siné, dnydn, = %r dr do, (1.7)
T T b1



1.2 Introductory Examples
giving

b 1 2 i i
Z Z / / i alzx e (k=) /41+2i(Myay cos 6+Maaz sinb)r . 4, 49
r-»() e 2/t

My=—00 My=—00

(1.8)
After some manipulation this gives
_ ma - ad
2 Z > Jo(k L), (1.9)
=—OO Mz_.—oo
where Ly, a, = 2,/ M?a3 + M2a3 and Jj is a Bessel function of zero order.
For F, we have
= _1 i foo e—(k—ﬂnl/al)2/4t+2ﬂiM1n1dnl
2 1—>0 2J/nt
1o o2Mai(k—2Miai1) (k +4iM1a1t):|
= —= = 1 f —
5 ; 1—»0 271 +er Wi
9 i ik Miay
T
M|=‘OO
... i cos(2k Myay), (1.10)
2
M1=—OO

and Fj; is the same with all subscripts 1 changed to 2 throughout. It can be shown
that taking the sums on the left-hand side of (1.6) from 1 instead of 0, which would
correspond to Neumann, rather than Dirichlet, boundary conditions, would reverse
the sign of F, and F3.

We therefore have

3 JokLua) £y Y ;—;cos(sza,-)jL@ (1.11)

M].MZZ—OO i=1,2 M=—o0

for Dirichlet (Neumann), conditions. Figure 1.1 shows a series of ray paths drawn
in the rectangular domain, which reflect M; and M, times from the left and bottom
walls, respectively, before returning to their origin with the initial heading so as to
be able to repeat indefinitely. Such closed paths are called periodic orbits. Their
length is given by Ly, a,. This is no coincidence, as will be seen. The term 2k Ma;
that forms the argument of the cosine in the second term can also be interpreted as
the length of a ray path traveling between two parallel sides.

Because p(k) is singular for all k = k,,, it must be smoothed before evaluation.
In practice, we find it more convenient to work with N(k), its integral with respect
to k. Before evaluating this, however, we shall separate out the terms corresponding
to zero-length orbits as

‘”a"k +
7[

+ 8(k
a+ay  Sk)

pk) = 27 4

(1.12)
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Figure 1.1. Periodic orbits for a rectangular enclosure.

leaving the remainder

a1azk

[e'e} , oo} ' a
> JotkLuwg) £ > > 5 cos(2k Mas), (1.13)

M, My=—00 i=12M=—0c0

Posc(k) =

where the primes on the summations indicate that the terms in which all indices are
zero are omitted. The smooth components can be integrated to give

— aa; , a1+ a 1
N(k) = 2192 -
k)= FF 7 *3

A L 1

L P

S Tty

which is the well-known formula for the average number of modes in a rectangu-
lar enclosure with area A and perimeter L (see, e.g., Morse & Ingard 1968). The
oscillating component can also be integrated to give

kst kL / sin(2k M
Noso(k) = 222 3 J1(k Lyt ) Yy Z sm( a)’ (1.14)

2 L
M, My=—o0 My, My i=12 M=

where the second term can be recognized as the Fourier series representation of a
sawtooth wave.

Partial sums of (1.14) plus N(k) are compared with the true modecount, calcu-
lated by evaluating (1.3) explicitly, in Figure 1.2.



