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1. Introduction

Semiconductors have played a major role in the current technological revolu-
tion. The enormous advances in electronics and computer science were made
possible by a better understanding of the properties of semiconductors, and
it is likely that the revolution has only just begun.

From the point of view of basic science and solid state physics in par-
ticular, semiconductors have been central and fundamental. Research on
the properties of semiconductors has led not only to the transistor (Nobel
Prize, 1956) but also to new insights into properties of matter such as tun-
neling (Nobel Prize, 1973 and 1986), disorder (Nobel Prize, 1977), and new
quantum effects (Nobel Prize, 1985). In addition, studies of semiconductor
band structures have had a vast impact on our understanding of the fun-
damental electronic structure of solids. Although most device applications
focus on the minimum semiconductor band gap, which is generally around
1eV, solid state physicists have been interested in a wider range of energy
~1Ry. Research on electronic structure in this range has led to tests of the
theories of quantum mechanics, optics, and electromagnetism.

For the past 50 to 60 years, a major aspiration of condensed matter
physics has been to explain and predict the properties of solids knowing
only the identities of the constituent atoms. Recently, this goal has been re-
alized for many semiconductor properties. The successes are best illustrated
by the progress made in understanding the electronic and optical properties
of semiconductors. Recently, even crystal structures have been determined
using accurate electronic calculations, but this area is in its infancy rela-
tive to the vast amount of experimental and theoretical work on optical
properties.

The use of optical measurements to study a physical system is not a de-
parture from traditional physics since it is probably true that more physics
has been learned using photons as probes than by any other means. For
example, the great advances of Heisenberg and Pauli were based on spec-
troscopic data. For many years, the major tests of quantum mechanics were
almost synonymous with optical measurements in atoms (i.e., gases). How-
ever, in most areas, the transition from studying atoms to studying solids
using optical probes came slowly. The standard argument was that the band
spectra of solids were too broad to give useful detailed electronic structure
data. It was obvious that the sharp, narrow line spectra associated with
atoms lend themselves readily to interpretation in terms of electron transi-
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tions between narrow energy levels, but the band spectra of solids, although
they also contain definitive structure capable of being interpreted, received
far less attention. For solids, the experiments and theories require more so-
phistication, but the data are rich with clues, and a quantum mechanical
theory can be constructed to unravel the mysteries.

Dozens of crystals have been analyzed, and the extent of the collab-
orative effort between experimentalists and theorists in this area has few
parallels. The result is a detailed picture of the underlying mechanisms
associated with optical processes. Some of the achievements are: accurate
determinations of the electronic energy levels, wavefunctions for electrons
in specific materials, interpretation of optical spectra in terms of electronic
transitions between energy levels, theories giving gross trends for a wide
variety of materials, and a variety of calculations related to properties not
directly associated with optical probes. The approaches and techniques have
allowed critical tests of the theory of electronic structure. These studies have
resulted in the development of new approaches for electronic structure cal-
culations, response theory, and so on.

The purpose of this volume is to review some of the highlights asso-
ciated with the above studies and to provide information concerning the
theoretical and experimental techniques. Another important objective is to
supply some of the useful information which has been gathered in these
studies. Sometimes references to the literature will be given in lieu of re-
sults.

Although some general aspects of electronic structure calculations will
be reviewed, the focus will on the pseudopotential approach. On the exper-
imental side, emphasis will be on techniques which investigate band struc-
ture. In particular, those measurements which give information about the
electronic structure over a large energy range (~ 1 Ry) will be discussed in
detail. The primary particle probe will be photons; reflectivity and photoe-
mission measurements will be featured.

Our hope is that this volume can serve both as a coherent source for
the underlying ideas relating electronic structure and optical properties and
as a source of factual information about semiconductors. Because of the
latter goal, we have included other relevant information about semiconduc-
tor properties which is not directly connected with the studies discussed,
that is, lattice constants, effective masses, minimum band gaps, etc., and an
attempt was made to include the most accurate and most current values.
Hence, this volume is intended to lie somewhere between a textbook and a
reference book. Numerous references to the literature are made, and it is
hoped that these will serve as bridges to material beyond the scope of this
book.

In most cases when discussing results, we have relied on a prototypical
crystal. Having presented the general ideas and results for the prototype,
extensions to other materials in the same class are described. Following this,



other related classes of materials are discussed. For example, silicon will be
used as one prototype. The band structure, optical response curves, density
of states, and other properties will be described. Results for other diamond
structure materials will then be given, and only those properties which differ
from silicon will be discussed in any detail. The extensions to zinc-blende
and other crystal types will then be made.



2. Theoretical Concepts and Methods

Of the many options for broadly classifying solids, electrical resistivity has
proved to be the most useful. The grouping of materials into insulators,
semiconductors, semimetals, and metals involves a parameter with a range
of order 1030, The resistivity boundaries between the classifications are not
very sharp, but they are sharp enough to make the separation for most
practical purposes. For the semiconductor regime, the resistivity is betwen
10% and 1073 ohm-cm, but we will also discuss insulators with resistiv-
ities above 10° ohm-cm and doped semiconductors and semimetals with
resistivities below 1073 ohm-cm. The distinction at the boundary between
semiconductors and insulators will be made on the basis of the size of the
fundamental (minimum) band gap. Semiconductors are assumed to have
band gaps from 0 to ~4eV, insulators >4eV, and semimetals <0. Gray
Sn (a-Sn) is an example of a borderline material which has zero band gap.
It has been called a zero-gap semiconductor; it has also been called in ideal
semimetal.

The wide range of resistivities of crystalline solids can be explained
using band theory, which is one of the major successes of condensed mat-
ter theory. The existence of bands, gaps, overlap of bands, and the other
important properties of band theory will be discussed later. These concepts
and properties are the direct consequences of the model used to describe a
solid. There are two conceptual models commonly used by theorists which
are both useful and lead to a wealth of practical calculations.

The two popular models of solids are the interacting atoms model and
the elementary excitation model. Since a solid is clearly a set of interact-
ing atoms, the former model implies that the atoms retain their character
and that perturbation theory on atomic properties will lead to a conve-
nient description of solids. Only partial success has been achieved when this
approach is taken too literally. The interacting atoms model has therefore
evolved from describing a collection of individual atoms to a model of a
solid composed of cores and valence electrons (Fig. 2.1). A core is composed
of a nucleus and core electrons. In the frozen-core approximation, which
is fundamental to the pseudopotential approach, the cores are taken to be
inert with respect to the formation of the solid. Therefore, cores in solids
are the same as the cores in isolated atoms, and only the valence electrons
readjust when the solid is formed. For silicon, this implies that the electronic
structure of the core is (15)2(2s)%(2p)®. Thus sodium, magnesium, and alu-
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Fig.2.1. Model of a solid
with cores and valence
electrons

Nucleus
Core electrons:
Valence electrons

minum all have the same core electrons as silicon, but the core charges,
because of the nuclei involved, are +1 for sodium, +2 for magnesium, +3
for aluminum, and +4 for silicon. The valence electrons are (3s)?, (33)2,
(35)%(3p)?, and (3s)%(3p)? respectively for these elements.

The interacting atoms model for silicon consists of cores with charge +4
arranged in a regular array with the four valence electrons per core moving
more or less freely through the core lattice. Interactions exist between the
cores, between the cores and valence electrons, and between the valence
electrons themselves. The Coulomb interaction dominates, and the many-
body problem involving around 1023 particles per cm? can, in principle, be
solved using quantum mechanics.

For the elementary excitation model, the excitations of the solid are
considered to be decomposed into normal modes, and the responses of the
solid to external probes are described in terms of these modes or collec-
tive excitations. A similar approach is used for describing electromagnetic
radiation in terms of photons using the formalism of quantum electrody-
namics. An example of an analogous description for solids would be the
concept of phonons. We begin with a description of the vibrations of atomic
cores. The simplest models involve masses connected by springs [2.1]. The
dispersion curve, i.e., the wavevector dependent frequency, w(q), describes
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the motion of the cores in real space. The next step uses the language of
quantum electrodynamics to describe the energy in the vibrational mode
using the harmonic oscillator energy levels E, = (n + 1/2)hw(q). A sound
mode can be viewed as n quanta or phonons excited above the ground state.
The phonons are a particular type of elementary excitation. They are col-
lective excitations which do not resemble the constituent particles which are
atomic cores and valence electrons holding the core together. Other exam-
ples of collective excitations are plasmons and magnons which result from
collective motions of electrons or spins. Collective excitations are usually
bosons.

There is another class of elementary excitation which consists of quasi-
particles. Quasi-particles are fermions which resemble their constituent par-
ticles. Electrons excited by an external probe in a solid are quasi-particles.
An electron or quasi-electron in a solid is strongly coupled to other elec-
trons and to the lattice of atomic cores. When an electron is probed with an
electromagnetic field, it does not usually respond as an individual particle.
The interactions can manifest themselves in a number of ways.

One way of including these interactions is by associating an effective
mass, m*, with the electron. This concept is common in solid state physics,
and it represents a convenient way of describing an interacting fermion. If
the effective mass correction arises primarily from the interaction between
an electron and the periodic core potential, the resulting effective mass is
usually called the band mass. If the mass correction arises from electron-
electron or electron-phonon interactions, then the effective mass correction
is considered to be a many-body correlation correction. An example of the
former is the small conduction band effective mass of InSb which arises
from the interaction of electrons in the conduction band with the periodic
potential. This is a band structure effect, and it will be discussed later.
An example of the latter is the polaron in an ionic crystals. In this case,
the electron polarizes the ionic lattice and carries a strain field with it as it
moves through the crystal. The combined electron plus strain field or optical
phonon cloud is a quasi-particle, a polaron, which behaves like an electron
with an increased mass.

The elementary excitation picture describes a solid as a gas or liquid
of excitations which can be created by external probes. The collective ex-
citations are bosons, and they can interact with each other. An important
component of this approach is based on the Landau theory of Fermi liquids.
This theory demonstrates that there is a one-to-one correspondence between
the excitations of a strongly coupled electron system (electron liquid) and
single particles states, that is, quasi-electrons. For many applications, this
important approach allows one to view the interacting electron system in
terms of single particle excitations.

To make contact with experimental measurements, the concepts em-
bodied in the interacting atoms or’ elementary excitation models need to



