The Creator of C++

The
C++

Programming
Language

Third Edition

Bjarne Stroustrup

AP EEPedening
vty | SN ke s

A
\ A 4

Addison-Wesley
An Imprint of Addison Wesley Longman, Inc.
Reading, Massachusetts - Harlow, England -« Menlo Park, California
Berkeley, California - Don Mills, Ontario - Sydney
Bonn - Amsterdam - Tokyo - Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and Addison-Wesley was aware of a trademark claim. the designations have been

printed in initial capital letters or all capital letters

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any
kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in

connection with or arising out of the use of the information contained herein.

The publisher offers discounts on this book when ordered in quantity for special sales. For more information please contact:
Corporate & Professional Publishing Group
Addison-Wesley Publishing Company
One Jacob Way
Reading. Massachusetts 01867

Library of Congress Cataloging-in-Publication Data

Stroustrup. Bjarne
The C++ Programming Language / Bjarne Stroustrup. — 3rd. ed.
p. cm.
Includes index.
ISBN 0-201-88954-4
|. C++ (Computer Programming Language) 1. Title

QA76.73.C153877 1997 97-20239
005.13"3—dc21 cip
== ATal

Copyright © 1997 by AT&T

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or
by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the
publisher. Printed in the United States of America.

This book was typeset in Times and Courier by the author.

Text printed on recycled and acid-free paper.
ISBN 0-201-88954-4

9 1011121314 CRS 0201 00 99
9th Printing January 1999

Preface

Programming is understanding.
— Kristen Nygaard

I find using C++ more enjoyable than ever. C++’s support for design and programming has
improved dramatically over the years, and lots of new helpful techniques have been developed for
its use. However, C++ is not just fun. Ordinary practical programmers have achieved significant
improvements in productivity, maintainability, flexibility, and quality in projects of just about any
kind and scale. By now, C++ has fulfilled most of the hopes I originally had for it, and also suc-
ceeded at tasks I hadn’t even dreamt of.

This book introduces standard C++7 and the key programming and design techniques supported
by C++. Standard C++ is a far more powerful and polished language than the version of C++ intro-
duced by the first edition of this book. New language features such as namespaces, exceptions,
templates, and run-time type identification allow many techniques to be applied more directly than
was possible before, and the standard library allows the programmer to start from a much higher
level than the bare language.

About a third of the information in the second edition of this book came from the first. This
third edition is the result of a rewrite of even larger magnitude. It offers something to even the
most experienced C++ programmer; at the same time, this book is easier for the novice to approach
than its predecessors were. The explosion of C++ use and the massive amount of experience accu-
mulated as a result makes this possible.

The definition of an extensive standard library makes a difference to the way C++ concepts can
be presented. As before, this book presents C++ independently of any particular implementation,
and as before, the tutorial chapters present language constructs and concepts in a ‘‘bottom up™’
order so that a construct is used only after it has been defined. However, it is much easier to use a
well-designed library than it is to understand the details of its implementation. Therefore, the stan-
dard library can be used to provide realistic and interesting examples well before a reader can be
assumed to understand its inner workings. The standard library itself is also a fertile source of pro-
gramming examples and design techniques.

T ISO/IEC 14882, Standard for the C++ Programming Language.

vi Preface

This book presents every major C++ language feature and the standard library. It is organized
around language and library facilities. However, features are presented in the context of their use.
That is, the focus is on the language as the tool for design and programming rather than on the lan-
guage in itself. This book demonstrates key techniques that make C++ effective and teaches the
fundamental concepts necessary for mastery. Except where illustrating technicalities, examples are
taken from the domain of systems software. A companion, The Annotated C++ Language Stan-
dard, presents the complete language definition together with annotations to make it more compre-
hensible.

The primary aim of this book is to help the reader understand how the facilities offered by C++
support key programming techniques. The aim is to take the reader far beyond the point where he
or she gets code running primarily by copying examples and emulating programming styles from
other languages. Only a good understanding of the ideas behind the language facilities leads to
mastery. Supplemented by implementation documentation, the information provided is sufficient
for completing significant real-world projects. The hope is that this book will help the reader gain
new insights and become a better programmer and designer.

Acknowledgments

In addition to the people mentioned in the acknowledgement sections of the first and second edi-
tions, I would like to thank Matt Austern, Hans Boehm, Don Caldwell, Lawrence Crowl, Alan
Feuer, Andrew Forrest, David Gay, Tim Griffin, Peter Juhl, Brian Kernighan, Andrew Koenig,
Mike Mowbray, Rob Murray, Lee Nackman, Joseph Newcomer, Alex Stepanov, David Vandevo-
orde, Peter Weinberger, and Chris Van Wyk for commenting on draft chapters of this third edition.
Without their help and suggestions, this book would have been harder to understand, contained
more errors, been slightly less complete, and probably been a little bit shorter.

I would also like to thank the volunteers on the C++ standards committees who did an immense
amount of constructive work to make C++ what it is today. It is slightly unfair to single out indi-
viduals, but it would be even more unfair not to mention anyone, so I’d like to especially mention
Mike Ball, Dag Briick, Sean Corfield, Ted Goldstein, Kim Knuttila, Andrew Koenig, Josée Lajoie,
Dmitry Lenkov, Nathan Myers, Martin O’Riordan, Tom Plum, Jonathan Shopiro, John Spicer,
Jerry Schwarz, Alex Stepanov, and Mike Vilot, as people who each directly cooperated with me
over some part of C++ and its standard library.

Murray Hill, New Jersey Bjarne Stroustrup

Preface to the Second Edition

The road goes ever on and on.
— Bilbo Baggins

As promised in the first edition of this book, C++ has been evolving to meet the needs of its users.
This evolution has been guided by the experience of users of widely varying backgrounds working
in a great range of application areas. The C++ user-community has grown a hundredfold during the
six years since the first edition of this book; many lessons have been learned, and many techniques
have been discovered and/or validated by experience. Some of these experiences are reflected here.

The primary aim of the language extensions made in the last six years has been to enhance C++
as a language for data abstraction and object-oriented programming in general and to enhance it as
a tool for writing high-quality libraries of user-defined types in particular. A ‘‘high-quality
library,”” is a library that provides a concept to a user in the form of one or more classes that are
convenient, safe, and efficient to use. In this context, safe means that a class provides a specific
type-safe interface between the users of the library and its providers; efficient means that use of the
class does not impose significant overheads in run-time or space on the user compared with hand-
written C code.

This book presents the complete C++ language. Chapters | through 10 give a tutorial introduc-
tion; Chapters 11 through 13 provide a discussion of design and software development issues; and,
finally, the complete C++ reference manual is included. Naturally, the features added and resolu-
tions made since the original edition are integral parts of the presentation. They include refined
overloading resolution, memory management facilities, and access control mechanisms, type-safe
linkage, const and static member functions, abstract classes, multiple inheritance, templates, and
exception handling.

C++ is a general-purpose programming language; its core application domain is systems pro-
gramming in the broadest sense. In addition, C++ is successfully used in many application areas
that are not covered by this label. Implementations of C++ exist from some of the most modest
microcomputers to the largest supercomputers and for almost all operating systems. Consequently,
this book describes the C++ language itself without trying to explain a particular implementation,
programming environment, or library.

This book presents many examples of classes that, though useful, should be classified as
“‘toys.”” This style of exposition allows general principles and useful techniques to stand out more

viii Preface to the Second Edition

clearly than they would in a fully elaborated program, where they would be buried in details. Most
of the useful classes presented here, such as linked lists, arrays, character strings, matrices, graphics
classes, associative arrays, etc., are available in ‘‘bulletproof’’ and/or *‘goldplated’” versions from a
wide variety of commercial and non-commercial sources. Many of these ‘‘industrial strength’’
classes and libraries are actually direct and indirect descendants of the toy versions found here.

This edition provides a greater emphasis on tutorial aspects than did the first edition of this
book. However, the presentation is still aimed squarely at experienced programmers and endeavors
not to insult their intelligence or experience. The discussion of design issues has been greatly
expanded to reflect the demand for information beyond the description of language features and
their immediate use. Technical detail and precision have also been increased. The reference man-
ual, in particular, represents many years of work in this direction. The intent has been to provide a
book with a depth sufficient to make more than one reading rewarding to most programmers. In
other words, this book presents the C++ language, its fundamental principles, and the key tech-
niques needed to apply it. Enjoy!

Acknowledgments

In addition to the people mentioned in the acknowledgements section in the preface to the first edi-
tion, I would like to thank Al Aho, Steve Buroff, Jim Coplien, Ted Goldstein, Tony Hansen, Lor-
raine Juhl, Peter Juhl, Brian Kernighan, Andrew Koenig, Bill Leggett, Warren Montgomery, Mike
Mowbray, Rob Murray, Jonathan Shopiro, Mike Vilot, and Peter Weinberger for commenting on
draft chapters of this second edition. Many people influenced the development of C++ from 1985
to 1991. I can mention only a few: Andrew Koenig, Brian Kernighan, Doug Mcllroy, and Jonathan
Shopiro. Also thanks to the many participants of the ‘‘external reviews’’ of the reference manual
drafts and to the people who suffered through the first year of X3J16.

Murray Hill, New Jersey Bjarne Stroustrup

Preface to the First Edition

Language shapes the way we think,
and determines what we can think about.
— B.L Whorf

C++ is a general purpose programming language designed to make programming more enjoyable
for the serious programmer. Except for minor details, C++ is a superset of the C programming lan-
guage. In addition to the facilities provided by C, C++ provides flexible and efficient facilities for
defining new types. A programmer can partition an application into manageable pieces by defining
new types that closely match the concepts of the application. This technique for program construc-
tion is often called data abstraction. Objects of some user-defined types contain type information.
Such objects can be used conveniently and safely in contexts in which their type cannot be deter-
mined at compile time. Programs using objects of such types are often called object based. When
used well, these techniques result in shorter, easier to understand, and easier to maintain programs.

The key concept in C++ is class. A class is a user-defined type. Classes provide data hiding,
guaranteed initialization of data, implicit type conversion for user-defined types, dynamic typing,
user-controlled memory management, and mechanisms for overloading operators. C++ provides
much better facilities for type checking and for expressing modularity than C does. It also contains
improvements that are not directly related to classes, including symbolic constants, inline substitu-
tion of functions, default function arguments, overloaded function names, free store management
operators, and a reference type. Ct+ retains C’s ability to deal efficiently with the fundamental
objects of the hardware (bits, bytes, words, addresses, etc.). This allows the user-defined types to
be implemented with a pleasing degree of efficiency.

C++ and its standard libraries are designed for portability. The current implementation will run
on most systems that support C. C libraries can be used from a C++ program, and most tools that
support programming in C can be used with C++.

This book is primarily intended to help serious programmers learn the language and use it for
nontrivial projects. It provides a complete description of C++, many complete examples, and many
more program fragments.

x Preface to the First Edition

Acknowledgments

C++ could never have matured without the constant use, suggestions, and constructive criticism of
many friends and colleagues. In particular, Tom Cargill, Jim Coplien, Stu Feldman, Sandy Fraser,
Steve Johnson, Brian Kernighan, Bart Locanthi, Doug Mcllroy, Dennis Ritchie, Larry Rosler, Jerry
Schwarz, and Jon Shopiro provided important ideas for development of the language. Dave Pre-
sotto wrote the current implementation of the stream I/O library.

In addition, hundreds of people contributed to the development of C++ and its compiler by
sending me suggestions for improvements, descriptions of problems they had encountered, and
compiler errors. I can mention only a few: Gary Bishop, Andrew Hume, Tom Karzes, Victor
Milenkovic, Rob Murray, Leonie Rose, Brian Schmult, and Gary Walker.

Many people have also helped with the production of this book, in particular, Jon Bentley,
Laura Eaves, Brian Kernighan, Ted Kowalski, Steve Mahaney, Jon Shopiro, and the participants in
the C++ course held at Bell Labs, Columbus, Ohio, June 26-27, 1985.

Murray Hill, New Jersey Bjarne Stroustrup

Contents

Preface v
Preface to Second Edition vii
Preface to First Edition ix
Introductory Material 1
1 Notes to the Readercccoeeiiiiiiiiiiiiiiiicceccccie e 3
2 A Tour of CH oo 21
3 A Tour of the Standard Libraryccccocoviiiiniiiiiniiiinin. 45
Part I: Basic Facilities 67
4 Types and Declarationscccccooiiiiiiiiiiiiiiinicie s 69
5 Pointers, Arrays, and SIFUCTUTESc.coevveeiiiieiiniieiiie e 87
6 Expressions and Statementscc.ccivviviveiminisinemsmeronmmenmessiees 107
T TFUNGCIIONS ...eonvermsesnnesmansasssesssnsamsssmssnnssssssasnsssnsiodsanissisiisesss sussssimass 143
8 Namespaces and EXCEPHONScccovviiiiiiiiiiiiiiceeece 165
9 Source Files and Programsccccccveiiiiiiiniiiiiiniiicciiicccinee, 197

iv Contents

Part II: Abstraction Mechanisms

10
11
12
13
14
15

Classes

Operator Overloadingcocovieviiieiiiiiiiiciecicieec e,
Derived CIASSES sauvammmsmmsvnsmsmsssss o sy sm s e pssueiss

Templates

Exception Handlingccooveeoiiiiinieiniiiiciieenececce e
Class HIerarchiescc.cccceeoierierieniiiienieiceiteeeee e

Part I1I: The Standard Library

16
17
18
19
20
21
22

Library Organization and CONtainerscooeerereevuerierneneenne
Standard CONtAINETScceeevviiierieeiie e et
Algorithms and Function Objectsc..ccevvevveeviiecreeiieiieciennn.
Itetators. and AllOCALOTS. «uuswsssusimssssmrmssassmmssemivismgissis s

Strings
Streams

Part IV: Design Using C++

23
24
25

Appendices

Index

A
B
C

Development and Designccoccoeeveeiiniininieiieieeceeeeee
Design and Programmingc.cecevienininieiieninieceeeeeeeeen
ROIES Of ClaASSES ...coovinviiiiiriiieiiitie et

The CH+ Grammarcc.ooovvveiiiiiiee e e v

Compatibility
Technicalities

221

223
261
301
327
355
389

427

429
461
507
549
579
605
657

689
691

723
765

791
793

815
827

869

Introduction

This introduction gives an overview of the major concepts and features of
the C++ programming language and its standard library. It also provides
an overview of this book and explains the approach taken to the descrip-
tion of the language facilities and their use. In addition, the introductory
chapters present some background information about C++, the design of
C++, and the use of C++.

Chapters

1 Notes to the Reader
2 A Tour of C++
3 A Tour of the Standard Library

2 Introduction Introduction

**... and you, Marcus, you have given me many things; now I shall give
you this good advice. Be many people. Give up the game of being
always Marcus Cocoza. You have worried too much about Marcus
Cocoza, so that you have been really his slave and prisoner. You have
not done anything without first considering how it would affect Marcus
Cocoza’s happiness and prestige. You were always much afraid that
Marcus might do a stupid thing, or be bored. What would it really have
mattered? All over the world people are doing stupid things ... I should
like you to be easy, your little heart to be light again. You must from
now, be more than one, many people, as many as you can think of ..."’

— Karen Blixen
(““The Dreamers’’ from ‘‘Seven Gothic Tales’’
written under the pseudonym Isak Dinesen,
Random House, Inc.
Copyright, Isac Dinesen, 1934 renewed 1961)

1

Notes to the Reader

"The time has come," the Walrus said,
"to talk of many things."
— L.Carroll

Structure of this book — how to learn C++ — the design of C++ — efficiency and struc-
ture — philosophical note — historical note — what C++ is used for — C and C++ —
suggestions for C programmers — suggestions for C++ programmers — thoughts about
programming in C++ — advice — references.

1.1 The Structure of This Book

This book consists of six parts:
Introduction: Chapters 1 through 3 give an overview of the C++ language, the key programming
styles it supports, and the C++ standard library.
Part I: Chapters 4 through 9 provide a tutorial introduction to C++’s built-in types and the
basic facilities for constructing programs out of them.
Part II: Chapters 10 through 15 are a tutorial introduction to object-oriented and generic pro-
gramming using C++.
Part I1I: Chapters 16 through 22 present the C++ standard library.
Part IV: Chapters 23 through 25 discuss design and software development issues.
Appendices: Appendices A through C provide language-technical details.
Chapter 1 provides an overview of this book, some hints about how to use it, and some background
information about C++ and its use. You are encouraged to skim through it, read what appears inter-
esting, and return to it after reading other parts of the book.
Chapters 2 and 3 provide an overview of the major concepts and features of the C++ program-
ming language and its standard library. Their purpose is to motivate you to spend time on funda-
mental concepts and basic language features by showing what can be expressed using the complete

4 Notes to the Reader Chapter 1

C++ language. If nothing else, these chapters should convince you that C++ isn’t (just) C and that
C++ has come a long way since the first and second editions of this book. Chapter 2 gives a high-
level acquaintance with C++. The discussion focuses on the language features supporting data
abstraction, object-oriented programming, and generic programming. Chapter 3 introduces the
basic principles and major facilities of the standard library. This allows me to use standard library
facilities in the following chapters. It also allows you to use library facilities in exercises rather
than relying directly on lower-level, built-in features.

The introductory chapters provide an example of a general technique that is applied throughout
this book: to enable a more direct and realistic discussion of some technique or feature, I occasion-
ally present a concept briefly at first and then discuss it in depth later. This approach allows me to
present concrete examples before a more general treatment of a topic. Thus, the organization of
this book reflects the observation that we usually learn best by progressing from the concrete to the
abstract — even where the abstract seems simple and obvious in retrospect.

Part I describes the subset of C++ that supports the styles of programming traditionally done in
C or Pascal. It covers fundamental types, expressions, and control structures for C++ programs.
Modularity — as supported by namespaces, source files, and exception handling — is also discussed.
[assume that you are familiar with the fundamental programming concepts used in Part 1. For
example, I explain C++’s facilities for expressing recursion and iteration, but I do not spend much
time explaining how these concepts are useful.

Part II describes C++'s facilities for defining and using new types. Concrete and abstract
classes (interfaces) are presented here (Chapter 10, Chapter 12), together with operator overloading
(Chapter 11), polymorphism, and the use of class hierarchies (Chapter 12, Chapter 15). Chapter 13
presents templates, that is, C++’s facilities for defining families of types and functions. It demon-
strates the basic techniques used to provide containers, such as lists, and to support generic pro-
gramming. Chapter 14 presents exception handling, discusses techniques for error handling, and
presents strategies for fault tolerance. I assume that you either aren’t well acquainted with object-
oriented programming and generic programming or could benefit from an explanation of how the
main abstraction techniques are supported by C++. Thus, I don’t just present the language features
supporting the abstraction techniques; I also explain the techniques themselves. Part IV goes fur-
ther in this direction.

Part IIT presents the C++ standard library. The aim is to provide an understanding of how to use
the library, to demonstrate general design and programming techniques, and to show how to extend
the library. The library provides containers (such as list, vector, and map; Chapter 16, Chapter 17),
standard algorithms (such as sort, find, and merge; Chapter 18, Chapter 19), strings (Chapter 20),
Input/Output (Chapter 21), and support for numerical computation (Chapter 22).

Part IV discusses issues that arise when C++ is used in the design and implementation of large
software systems. Chapter 23 concentrates on design and management issues. Chapter 24 discusses
the relation between the C++ programming language and design issues. Chapter 25 presents some
ways of using classes in design.

Appendix A is C++’s grammar, with a few annotations. Appendix B discusses the relation
between C and C++ and between Standard C++ (also called ISO C++ and ANSI C++) and the ver-
sions of C++ that preceded it. Appendix C presents some language-technical examples.

Section 1.1.1 Examples and References 5

1.1.1 Examples and References

This book emphasizes program organization rather than the writing of algorithms. Consequently, |
avoid clever or harder-to-understand algorithms. A trivial algorithm is typically better suited to
illustrate an aspect of the language definition or a point about program structure. For example, I
use a Shell sort where, in real code, a quicksort would be better. Often, reimplementation with a
more suitable algorithm is an exercise. In real code, a call of a library function is typically more
appropriate than the code used here for illustration of language features.

Textbook examples necessarily give a warped view of software development. By clarifying and
simplifying the examples, the complexities that arise from scale disappear. I see no substitute for
writing realistically-sized programs for getting an impression of whdt programming and a program-
ming language are really like. This book concentrates on the language features, the basic tech-
niques from which every program is composed, and the rules for composition.

The selection of examples reflects my background in compilers, foundation libraries, and simu-
lations. Examples are simplified versions of what is found in real code. The simplification is nec-
essary to keep programming language and design points from getting lost in details. There are no
“‘cute’” examples without counterparts in real code. Wherever possible, I relegated to Appendix C
language-technical examples of the sort that use variables named x and y, types called A and B, and
functions called f() and g ().

In code examples, a proportional-width font is used for identifiers. For example:

#include<iostream>

int main ()

{
std :: cout << "Hello, new world!'\n" ;

}

At first glance, this presentation style will seem ‘‘unnatural’’ to programmers accustomed to seeing
code in constant-width fonts. However, proportional-width fonts are generally regarded as better
than constant-width fonts for presentation of text. Using a proportional-width font also allows me
to present code with fewer illogical line breaks. Furthermore, my experiments show that most peo-
ple find the new style more readable after a short while.

Where possible, the C++ language and library features are presented in the context of their use
rather than in the dry manner of a manual. The language features presented and the detail in which
they are described reflect my view of what is needed for effective use of C++. A companion, The
Annotated C++ Language Standard, authored by Andrew Koenig and myself, is the complete defi-
nition of the language together with comments aimed at making it more accessible. Logically,
there ought to be another companion, The Annotated C++ Standard Library. However, since both
time and my capacity for writing are limited, I cannot promise to produce that.

References to parts of this book are of the form §2.3.4 (Chapter 2, section 3, subsection 4),
§B.5.6 (Appendix B, subsection 5.6), and §6.6[10] (Chapter 6, exercise 10). Italics are used spar-
ingly for emphasis (e.g., *‘a string literal is nor acceptable’”), for first occurrences of important con-
cepts (e.g., polymorphism), for nonterminals of the C++ grammar (e.g., for-statement), and for com-
ments in code examples. Semi-bold italics are used to refer to identifiers, keywords, and numeric
values from code examples (e.g., class, counter, and 1712).

6 Notes to the Reader Chapter 1

1.1.2 Exercises

Exercises are found at the ends of chapters. The exercises are mainly of the write-a-program vari-
ety. Always write enough code for a solution to be compiled and run with at least a few test cases.
The exercises vary considerably in difficulty, so they are marked with an estimate of their diffi-
culty. The scale is exponential so that if a (*1) exercise takes you ten minutes, a (*2) might take an
hour, and a (*3) might take a day. The time needed to write and test a program depends more on
your experience than on the exercise itself. A (1) exercise might take a day if you first have to get
acquainted with a new computer system in order to run it. On the other hand, a (*5) exercise might
be done in an hour by someone who happens to have the right collection of programs handy.

Any book on programming in C can be used as a source of extra exercises for Part I. Any book
on data structures and algorithms can be used as a source of exercises for Parts II and III.

1.1.3 Implementation Note

The language used in this book is “‘pure C++* as defined in the C++ standard [C++,1998]. There-
fore, the examples ought to run on every C++ implementation. The major program fragments in
this book were tried using several C++ implementations. Examples using features only recently
adopted into C++ didn’t compile on every implementation. However, I see no point in mentioning
which implementations failed to compile which examples. Such information would soon be out of
date because implementers are working hard to ensure that their implementations correctly accept
every C++ feature. See Appendix B for suggestions on how to cope with older C++ compilers and
with code written for C compilers.

1.2 Learning C++

The most important thing to do when learning C++ is to focus on concepts and not get lost in
language-technical details. The purpose of learning a programming language is to become a better
programmer; that is, to become more effective at designing and implementing new systems and at
maintaining old ones. For this, an appreciation of programming and design techniques is far more
important than an understanding of details; that understanding comes with time and practice.

C++ supports a variety of programming styles. All are based on strong static type checking, and
most aim at achieving a high level of abstraction and a direct representation of the programmer’s
ideas. Each style can achieve its aims effectively while maintaining run-time and space efficiency.
A programmer coming from a different language (say C, Fortran, Smalltalk, Lisp, ML, Ada, Eiffel,
Pascal, or Modula-2) should realize that to gain the benefits of C++, they must spend time learning
and internalizing programming styles and techniques suitable to C++. The same applies to pro-
grammers used to an earlier and less expressive version of C++.

Thoughtlessly applying techniques effective in one language to another typically leads to awk-
ward, poorly performing, and hard-to-maintain code. Such code is also most frustrating to write
because every line of code and every compiler error message reminds the programmer that the lan-
guage used differs from “‘the old language.”” You can write in the style of Fortran, C, Smalltalk,
etc., in any language, but doing so is neither pleasant nor economical in a language with a different
philosophy. Every language can be a fertile source of ideas of how to write C++ programs.

