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Preface

From its early days, the total synthesis of complex molecules, especially
those that are natural products, has been the king’s discipline in organic
chemistry. The reasons for this are manifold: the challenge lying in a novel
and intricate molecular architecture or the difficulty encountered when iso-
lating the substance from its natural sources, or the possibility of finding a
wide test ground for established methodology or the incentive to invent new
methodology when the old one has failed, or simply the art and elegance
which is so typical of a truly efficient synthetic sequence. In any case, every-
body will agree that total synthesis is the best way to train young chemists
and to prepare them for any kind of later employment.

In these two volumes, the contributions of a number of organic synthetic che-
mists from the German speaking area have been collected. It is the hope of the
authors and the editor that these articles, which highlight all the various aspects
of organic synthesis, will provide not only an insight into the basic strategy and
tactics but also the purpose of organic syntheses.

Vienna, September 2004 Johann Mulzer
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Abstract Total syntheses of the natural products kelsoene and preussin are comprehen-
sively reviewed. Kelsoene is a sesquiterpene with a unique tricyclo[6.2.0.0>%]decane skel-
eton. It contains six stereogenic centers the selective construction of which has been ad-
dressed differently in the five syntheses known to date. Three syntheses employ an inter-
molecular [2+2]-photocycloaddition reaction as key step. One synthesis is based on a
homo-Favorskii rearrangement and one on an intramolecular [2+2]-photocycloaddition.
Preussin is a pyrrolidine alkaloid with three stereogenic centers which are all located
within the central heterocyclic core (C-2, C-3, C-5). So far, 18 total syntheses of preussin
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have been completed. Seven syntheses include the nucleophilic attack on an L-phenylala-
nine derived electrophile as key step, five use @-amino- or a-hydroxycarboxylic acids as
chiral pool building blocks. Two syntheses are based on sugars as chiral starting materi-
als and two are based on the desymmetrization of meso-compounds. In addition, there
are two syntheses which use a chiral auxiliary to establish the first stereogenic element
en route to preussin.

Keywords Alkaloids - Natural products - Photochemistry - Terpenes - Total synthesis

List of Abbreviations

Am Amyl

ds Diastereoselectivity

im Imidazole

MSH O-(Mesitylenesulfonyl)hydroxyl-amine
NOE Nuclear Overhauser effect/enhancement
NOESY Nuclear Overhauser enhancement spectroscopy
PPL Pig pancreatic lipase

SES Trimethylsilyl ethyl sulfonyl

TIBAL Triisobutylaluminum

TPAP Tetrapropylammonium perruthenate

1

Introduction

The title compounds kelsoene (rac-1) and (+)-preussin (2) have recently
been synthesized in our laboratories using a stereoselective photochemical
reaction as key step (Fig. 1). It is the purpose of this review to give a more
detailed account on this work. In addition, other successful synthetic strate-
gies to kelsoene and preussin will be comprehensively discussed. This inten-
tion has defined the way the content of the review was arranged. In two indi-
vidual sections the target molecules are presented. Each section provides a
short introduction to the target, a review on the syntheses conducted by oth-
er groups and finally an account of our own contribution.

H =
5 /§ 12 (+)-Kelsoene (+)-Preussin
L (1) 2

Fig. 1 Chemical structures of (+)-kelsoene (1) and (+)-preussin (2)
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2
Kelsoene

(+)-Kelsoene (1) was first isolated from the sponge Cymbastela hooperi Van
Soest, Desqueyroux-Faundez, Wright, K6nig (Axinellidae, Halichondrida)
collected from Kelso reef, Great Barrier Reef, Australia [1]. Its constitution
and relative configuration was elucidated by Konig and Wright. It is a
sesquiterpene with a tricyclo[6.2.0.0>°]decane skeleton rarely encountered
in natural products. The compound was later also found in the liverworts
Ptychanthus striatus [2], Calypogeia muelleriana [3], and Tritomaria quin-
quedentata [4]. Proof of the absolute configuration was obtained from total
synthesis (see below) while initial NMR studies [5] had led to the conclusion
that the natural product possessed the configuration of ent-1. Labeling stud-
ies (Scheme 1, O=13C label) with [2-'°C]-mevalonate indicated that the bio-

Scheme 1

synthesis proceeds from farnesyl diphosphate (3) via the germacradienyl
cation (4) and the alloaromadendranyl cation (5) [2, 6].

From a synthetic point of view the stereoselective construction of the tri-
cyclodecane skeleton and the installation of the methyl group at C-5 and of
the 2-propenyl group at C-7 pose significant challenges which were ad-
dressed differently in the five syntheses of kelsoene known to date.

2.1
Syntheses by Other Groups

The following sections give an overview of the total syntheses of kelsoene
that have been reported by other groups. With respect to the key step by
which the tricyclic framework is constituted, they can be divided into two
groups, the [2+2]-photocycloaddition approach and the homo-Favorskii
strategy.
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2.1.1
Intermolecular [2+2]-Photocycloaddition Approach

2.1.1.1
Intermolecular [2+2]-Photocycloaddition as the Key Step

The first total synthesis of kelsoene was achieved by Mehta and Srinivas [7,
8]. The tricyclic scaffold was established by an intermolecular [2+2]-photo-
cycloaddition of diquinane enone rac-6 and 1,2-dichloroethylene (7) as the
key step (Scheme 2). As a consequence of the steric hindrance implemented

(¢]
rac-6/ ent6/6 7 (X=0Cl) rac-9/ent9/9 (X=Cl) 85%
rac-6 8 (X=H) rac-10 (X=H) 90%

Scheme 2

in the bicyclic ring system of 6, the alkene 7 is forced to attack exclusively
from the exo-face of 6. The perfect facial diastereoselectivity results in the
formation of the tricyclodecane 9 the framework of which is connected in
the requisite cis-anti-cis fashion [7]. In subsequent syntheses by others
[9-11] and in the enantioselective synthesis by Mehta and Srinivas [12] an
identical or almost identical photochemical key step was employed. In all
syntheses, diquinane enone 6, its enantiomer ent-6, or the racemate rac-6
was used as the photoactive compound, the reaction partner was 1,2-
dichloroethylene (7) [7-10, 12] or ethylene (8) [11].

The fact that all approaches employing the intermolecular photocycload-
dition key step used the same precursor for the construction of the four-
membered ring renders enone 6 the key intermediate of the different syn-
thetic strategies. It is therefore sensible to compare first the different strate-
gies to synthesize precursor 6. Afterwards, the different ways to complete
the syntheses of kelsoene will be discussed.

2.1.1.2
Approaches to the Photocycloaddition Precursor

In the first total synthesis of kelsoene (rac-1) [7, 8], commercially available
1,5-cyclooctadiene (11) was chosen as the starting material (Scheme 3). Oxi-
dative cyclization with a mixture of PdCl, and Pb(OAc), in acetic acid led
to the formation of a diquinane diacetate [13] that was saponified to give
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. 1-PCC
1. PACly, Pb(OAC)s OH 2 MePPhyl, KO#Bu O
2. KOH/MeOH <I> 3. Hp [P/C] <:i§
67% \ 50% p
HO :
1 rac-12 rac-13
1. LHMDS, TMSCI O 4 MeLi
2. Pd(OAc), Ci} 2.PCC -
80% \ 80%
rac-14

Scheme 3

2,6-dihydroxybicyclo[3.3.0]octane (rac-12). Oxidation of the two hydroxy
groups followed by selective monomethylenation and catalytic hydrogena-
tion furnished the endo-methyl diastereoisomer rac-13 as the major product
(dr=80/20). The observed diastereoselectivity was explained by the fact that
the catalytic hydrogenation proceeded preferentially from the more easily
accessible convex face of the diquinane framework [7].

Ketone rac-13 was transformed into the corresponding silylenolether and
by Pd(II)-mediated Saegusa oxidation [14] into o,f-unsaturated ketone rac-
14. By alkylative enone transposition comprising methyl lithium addition
and pyridinium chlorochromate (PCC) oxidation [15], rac-14 was finally
converted into the racemic photocycloaddition precursor rac-6. In conclu-
sion, the bicyclic irradiation precursor rac-6 was synthesized in a straight-
forward manner from simple 1,5-cyclooctadiene (11) in nine steps and with
an overall yield of 21%.

In a succeeding publication, the same authors reported on an enantiose-
lective approach to diquinane enones 6 and ent-6 by combining the above-
described synthesis with an enzymatic kinetic resolution (Scheme 4) [12].
After lipase-catalyzed enantioselective transesterification of diol rac-12,

Z>0Ac W OH OAc OH
[Amano lipase PS-30] : ‘ R
HO H AcO AcO
12 15 16
38% 33% 14%
>98% ee >99% ee 72% ee

Scheme 4
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enantiomerically pure diol 12 and diacetate 15 as well as monoacetate 16
were isolated in 38%, 33%, and 14% yield, respectively.

Continuing the synthesis of rac-6 with enantiomerically pure diols 12 and
ent-12 (after saponification of 15 with KOH), both enantiomers 6 and ent-6
were accessible. This allowed for an enantioselective synthesis of natural kel-
soene (1) and its enantiomer (ent-1) (see below) with only one additional
step as compared to the synthesis of the racemate (rac-1).

The approach of Schulz et al. to enantiomerically pure diquinane enone
ent-6 employed (R)-(+)-pulegone (17) as chiral pool starting material [9, 10]
(Scheme 5). Bromination and Favorskii rearrangement of 17 generated a

8 Bfg

2. KOH 1. HCI \\ 1. (COCl),
O 3. separation 2. +BuOK \ 2. AlCl3
ent-6
24% 49% 41%

“COOH “'COOH

17 18 19

Scheme 5

mixture of cis- (18) and trans-pulegonic acids [16] that was separated by col-
umn chromatography. Acid-induced lactonization of the desired cis-substi-
tuted acid 18 followed by elimination with a bulky base led to the formation
of the all-cis-substituted acid 19 with a terminal double bond [16, 17].

The photocycloaddition precursor ent-6 was obtained from 19 by trans-
formation into the corresponding acid chloride and AlCl;-mediated intra-
molecular acylation of the double bond. While the conciseness of this strate-
gy is appealing, drawbacks are the low yields achieved in the individual re-
action steps giving ent-6 in an overall yield of only 5%.

Racemic diquinane enone rac-6 was prepared by Piers and Orellana start-
ing from cyclopentenone (Scheme 6) [11]. After the preparation of the hete-
rocuprate from stannane 20, conjugate addition to cyclopentenone in the
presence of BF;-Et,O provided carbonyl compound 21. It was expected that
conversion of 21 by intramolecular alkylation and subsequent hydrogena-
tion should provide the desired endo-substituted diquinane rac-13. While
other hydrogenation methods proved to be rather unselective, reduction in
the presence of Wilkinson’s catalyst finally resulted in the formation of rac-
13 with good facial diastereoselectivity [11].

The introduction of the double bond of rac-14 was performed by conver-
sion of rac-13 into its o-phenylselenide, subsequent peroxide oxidation, and
elimination. Following the synthesis reported by Mehta and Srinivas, an
alkylative enone transposition was used as the last step towards irradiation
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1. MeLi
2. CuCN-LiCl
a 3. BFg-E;0 c O 1.kH
4. cyclopentenone 2. Ho [(Ph3P)3RhCl]
Snhleg 69% 71%
20 21
1. LDA
2. PhSeCl 1. MeLi
3. HoO0 2. PCC on alumina
rac-13 rac-14 rac-6
83% 60%
dr = 95/5
Scheme 6

precursor rac-6. Not taking into account the preparation of 4-chloro-2-
trimethylstannylbut-1-ene (20), this synthetic route offers another elegant
access to rac-6 with a reported overall yield of 24% exceeding those of the
other syntheses.

In conclusion, the three groups which applied the intermolecular photo-
cycloaddition as the key step in their approach to kelsoene (1) reported dif-
ferent strategies to synthesize the irradiation precursor 6 in racemic or
enantiomerically pure form. After the photocycloaddition step the syntheses
of kelsoene were completed in different ways. The next section describes the
different strategies employed in the second half of the way to kelsoene.

2113
Completion of the Syntheses

The first report on the construction of the complete 5-5-4-fused tricyclic
framework of kelsoene and later on the first total synthesis of racemic kel-
soene rac-1 was published by Srinivas and Mehta in 1999 [7, 8]. As discussed
in the last section, the insertion of an enzymatic kinetic resolution step al-
lowed for the analogous synthesis in an enantioselective manner [12]. The
intermolecular [2+2]-photocycloaddition as the key step in their approach
was performed by irradiating diquinane enone 6 with 1,2-dichloroethylene
(7) (Scheme 2). This led to the formation of a mixture of cis- and trans-
dichlorosubstituted cycloaddition products 9 in 85% yield. The perfect facial
diastereoselectivity resulting from the attack of alkene 7 on the exo-face of 6
led to the exclusive formation of the desired cis-anti-cis connected tricy-
clodecane 9. After protection of the carbonyl group as an acetal, the chlorine
atoms were removed by reductive dehalogenation with sodium naph-
thalenide. Originally, the resulting cyclobutene was then hydrogenated and
deprotected to yield cyclobutane 10 (Scheme 7).



