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Preface

This book contains papers based on lectures presented at the NATO Advanced Study
Institute "Information Security and Related Combinatorics", held in the beautiful town
of Opatija at the Adriatic Coast of Croatia from May 31 to June 11, 2010. On behalf
of all participants, we would like to thank the NATO Science for Peace and Security
Programme for providing funds for the conference, as well as the local sponsors, which
included the Ministry of Science and Education of the Republic of Croatia, the Croatian
Academy of Sciences and Arts, the Primorsko-goranska County, the University of Rijeka
and its Mathematics Department, the Foundation of the University of Rijeka, the Society
of Mathematicians and Physicists, the Login Co., the Opatija Tourist Board, the City of
Opatija, the City of Rijeka, and Brodokomerc.nova.

The Advanced Study Institute had fourteen lecturers: K.T. Arasu (USA), C. Col-
bourn (USA), F. Fuji-Hara (Japan). W. Haemers (The Netherlands), M. Jimbo (Japan),
I1.D. Key (USA), H. Kharaghani (Canada), C. Lam (Canada), S. Magliveras, (USA), J.
Moori (South Africa), T. Shaska (USA), L. Storme (Belgium), V.D. Tonchev (USA), R.
Wilson (USA), and was attended by over 60 graduate students and junior scientists from
Albania, Armenia, Belgium, Bosnia and Herzegovina, Bulgaria, Croatia, Germany, Italy,
Macedonia, The Netherlands, Russia, Turkey, and USA.

The unifying theme of the conference was combinatorial mathematics used in appli-
cations related to information security, cryptography, and coding theory.

The book will be of interest to mathematicians, computer scientists and engineers
working in the area of digital communications, as well as to researchers and graduate stu-
dents who are willing to learn more about the applications of combinatorial mathematics
to problems arising in communications and information security. The majority of papers
are surveys on topics that are subject to current research and are written in a tutorial text
book style that makes this volume a good source as an additional text for a course in dis-
crete mathematics or applied combinatorics. The book can be used in graduate courses
of applied combinatorics with a focus on coding theory and cryptography.

Dean Crnkovi¢ and Vladimir Tonchev



Contents

Preface
Dean Crnkovi¢ and Viadimir Tonchev

Crypto Applications of Combinatorial Group Theory
Ivana Ili¢ and Spyros S. Magliveras

Generating Rooted Trees of m Nodes Uniformly at Random
Kenneth Matheis and Spyros S. Magliveras

On Jacobsthal Binary Sequences
Spyros S. Magliveras, Tran van Trung and Wandi Wei

Applications of Finite Geometry in Coding Theory and Cryptography
A. Klein and L. Storme

The Arithmetic of Genus Two Curves
T. Shaska and L. Beshaj

Covering Arrays and Hash Families
Charles J. Colbourn

Sequences and Arrays with Desirable Correlation Properties
K.T. Arasu

Permutation Decoding for Codes from Designs, Finite Geometries and Graphs
J.D. Key

Finite Groups, Designs and Codes
J. Moori

Designs, Strongly Regular Graphs and Codes Constructed from Some
Primitive Groups
Dean Crnkovi¢, Vedrana Mikuli¢ Crnkovi¢ and B.G. Rodrigues

Matrices for Graphs, Designs and Codes
Willem H. Haemers

Finding Error-correcting Codes Using Computers
Clement Lam

Quantum Jump Codes and Related Combinatorial Designs
Masakazu Jimbo and Keisuke Shiromoto

vii

17

27

38

59

99

136

172

202

231

253

278

285



viil

Unbiased Hadamard Matrices and Bases
Hadi Kharaghani

Multi-structured Designs and Their Applications
Ryoh Fuji-Hara and Ying Miao

Recent Results on Families of Symmetric Designs and Non-embeddable
Quasi-residual Designs
Mohan S. Shrikhande and Tariq A. Alragad

Codes and Modules Associated with Designs and #-uniform Hypergraphs
Richard M. Wilson

Finite Geometry Designs, Codes, and Hamada’s Conjecture
Viadimir D. Tonchev

Subject Index

Author Index

312

326

363

404

437

449

451



Information Security, Coding Theory and Related Combinatorics 1
D. Crnkovié and V. Tonchev (Eds.)

10S Press, 2011

© 2011 The authors and 10S Press. All rights reserved.

doi:10.3233/978-1-60750-663-8-1

Crypto applications of combinatorial
group theory

Ivana Ili¢ and Spyros S. Magliveras
CCIS, Department of Math. Sciences, Florida Atlantic University,
Boca Raton, FL 33431, USA
e-mail: iilic@fau.edu, spyros @fau.edu

Abstract. The design of a large number of cryptographic primitives is based on
the intractability of the traditional discrete logarithm problem (IDLP). However,
the well known quantum algorithm of P. Shor [9] solves the tDLP in polynomial
time, thus rendering all cryptographic schemes based on tDLP ineffective, should
quantum computers become a practical reality. In [5] M. Sramka et al. generalize
the DLP to arbitrary finite groups. The DLP for a non-abelian group is based on a
particular representation of a chosen family of groups, and a choice of a class of
generators for these groups. In this paper we show that for PSL(2,p) = (a, ).
p an odd prime, certain choices of generators («, (3) must be avoided to insure that
the resulting generalized DLP is indeed intractable. For other types of generating
pairs we suggest possible cryptanalytic attacks, reducing the new problem to the
earlier case. We note however that the probability of success is asymptotic to l)
as p — 00. The second part of the paper summarizes our successful attack of the
SL(2,2") based Tillich Zémor cryptographic hash function [2], and show how to
construct collisions between palindromic strings of length 2n + 2.

2000 Mathematics Subject Classification: 68P25, 94A60.

Keywords. Discrete logarithm, finite groups, intractability, representations and pre-
sentations of groups, >SL(2,p), public key cryptosystems, Tillich-Zémor hash
function.

Introduction

In a recent quote, P. Nguyen states “Due to Shor’s algorithms for computing prime fac-
torizations and discrete logarithms on quantum computers, most of present day public
key cryptosystems must be considered insecure , if sufficiently large quantum computers
became available. ... One interesting line of research in this direction is the use of com-
putational problems in non-abelian groups ...~ [6]. In this article we discuss recent re-
sults on the generalized discrete logarithm problem (GDLP) in the family of non-abelian
simple groups PSL(2, p), p an odd prime. In particular we examine these groups in their
representations as matrices over G'F'(p), and investigate weak generator choices for the
generalized DLP problem. In the second part of the paper we summarize the interest-
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ing approach in [2] which culminated with the demise of the well known Tillich-Zémor
cryptographic hash function [13].

1. Preliminaries

The authors of [5] generalize the discrete logarithm problem from finite cyclic groups
to arbitrary finite groups. We restate the definition. Let (& be a finite group generated by
Qs ie, G = (aq,...,a4). Denote by &« = (avy,...,qy), the ordered tuple of
generators of the group G'. As defined in [5], for a given (3 € G, the generalized discrete
logarithm problem (GDLP) of /3 with respect to « is to determine a positive integer k& and

a (kt)-tuple of non-negative integers x = (xiy,...,: Tlgs ovns: I'ii,....Ip) such that
k
[ = H (ay™ ooy,
i=1
We can write this formally as 5 = «”. The (kt)-tuples (xiy,...,: Bogs v 55 5B ks 5« 558 Cit)
are called the generalized discrete logarithms of /3 with the respect to o = («vy, ..., o).
Denote by
A.

S, = {H (o™ ...af") | @y € Z,,J}

=1

where n; denotes the order of element «v;. Then, the smallest positive integer ki such that
forall k > ky G C Sy is called the depth of group GG with respect to (ay, .. ., «). There
could be more than one generalized discrete logarithm of /3 with respect to «v. Actually,
there will be infinitely many generalized discrete logarithms: if 2 is a generalized discrete
logarithm of /3 with respect to a and if o = 1, then, the catenations || and || are
also generalized discrete logarithms of /3 with respect to cv.

The generalization of the discrete logarithm problem to finite groups has potential
applications in cryptography. To be able to construct secure cryptographic primitives
based on the generalized discrete logarithm problem in finite groups, care must be taken
to ensure that the groups along with their representations and choice of generators have
an intractable generalized discrete logarithm problem.

The traditional discrete logarithm problem is generally considered computationally
intractable. However, there exist groups and their representations in which the problem
can be solved efficiently. For example, in Z,,, the additive group of integers modulo 7, the
discrete logarithm can be easily computed. For a given element /3 in Z,, and generator o
of Z,,. it is easy to find a non-negative integer = such that z«v = (3. Since « is a generator,
ged(n, «) = 1, and the multiplicative inverse in the ring (Z,,, +, ) of a can be computed
by the extended Euclidean algorithm. In general, one may speak of a tractable/intractable
GDLP problem for a given infinite family of pairs {(G, A;)} e indexed by L, where
the Gy are groups in a common representation p, and Ay a particular set of generators for
Gy.
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The generalized discrete logarithm problem may be tractable for some groups and
generators in representation p. We examined the groups PSL(2,p) as potential candi-
dates for cryptographic applications, but our results show that when PSL(2,p) is rep-
resented by matrices, the generalized discrete logarithm problem with respect to several
types of generating sets does not provide the required strength.

As is customary, we denote by Z the ring of integers. We also denote by Z" the
positive integers, and by Z" the non-negative integers.

2. Generalized discrete logarithm problem in PSL(2, p)

Suppose that for an odd prime p the group GG = PSL(2,p) is represented by matrices
of SL(2,p), up to a factor +1, where [ is the 2 x 2 identity matrix. Suppose further that
G'is generated by two elements, i.e., G = (A, B). We have examined the tractability
of the generalized discrete logarithm problem in this setup with respect to different gen-
erating pairs of elements (A, B). The results of our research show that the hardness of
computation of the generalized discrete logarithm problem will depend not only on the
group representation, but also on the choice of generators. To perform a detailed analy-
sis on whether the generalized discrete logarithm can be computed efficiently, we con-
sidered the following cases: 1) group G is generated by special elements: A = (} 1),
and B = (1Y); 2) group G is generated by two elements both of order p; 3) group
G is generated by two elements, one of which is of order p; 4) group G is generated by
two elements none of which is of order p. We have analyzed the first two cases in [4].
Suppose that M = (%) € G, with a,b,c,d € F,, the field of order p.

The matrices

11 10
A—<01)' B*<11>

are both of order p, non-commuting and generate G, i.e., G = (A, B). Moreover, the
authors of [5] show that the depth of group ¢ with the respect to the (A, B) is two, so
that the element M € ' can be written as M = A' B A* B, We have

wipiakne (11 10 1k 10
AR4 B_<()l)(j1 01 (1)

Hence,

ab\  [(14ij+ (A +ij)k+i) (1 +ij)k+i
ed) ~ J+eGk+1) k1)

By equating corresponding entries in the previous equality we obtain the system of
equations
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1+ij+0((1+ij)k+i)=a
(1+ij)k+i=b
JHLl(jk+1)=c¢

jk+1=d

which can be solved for 7, j, k, ¢ by computing Grobner basis of the ideal I = ( 1 +
Ck+ij+ijkt+il —a,k+ijk+i—b,j+jkl+0—c,jk+1—d).AGrobner basis
for the above ideal is computed over the set of rational numbers: [ { — jic + ja — ¢, k +
id — b, jibc + ji — jab — a + be + 1, jid — jb+ d — 1, ad — be — 1 ], which yields the
following system of equations: in i, j, k,/ € 7Z,,.

{—jic+ja—c=0
k+id—b=20
jid—jb+d—-1=0

whose solutions in 4, j, k, [ represent the generalized discrete logarithms of M with re-
spect to (A, B). The solutions are given by the following proposition:

Proposition 2.1 Let A, B and M be as above. Then, there exists a non-negative integer
n < p such that nd — b # 0 over Z,,, and such that the 4-tuple (i,j,k, () withi = n,
j=0—-d)(nd—b)"Lk=b-nd ¢ =(1—d)(nc—a)(nd—b)~! + ¢ provides a
solution to M = A'BJ A* B*.

Proof. It can be directly verified that the given values for 7, j, k, ¢ satisfy the above
system of equations. The existence of n is ensured since M € PSL(2,p) and hence b
and d can not simultaneously be equal to zero. O

We have shown that the generalized discrete logarithm problem can be solved ef-
ficiently in PSL(2,p) with respect to the special given generators (A, B) as defined
above. Further, as in [4], we construct an algorithm for computing the generalized dis-
crete logarithm problem in PSL(2, p) with respect to any two generators of order p. As-
sume that ', D are two non-commuting elements of order p in PSL(2,p). Then, since
any two non-commuting elements of order p from PSL(2, p) generate the whole group,
it follows that PSL(2,p) = (C, D). To determine non-negative integers i, j, k, / such
that: M = C*'DJC* D", we look for an element ¢ € G which satisfies C' = ¢~ ' A%g
and D = g~ 'B!g, for some non-negative integers s,t < p and where A and B are the
matrices defined above.

Then,
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M = C'D'C*D*

= (97" A%) (¢ ' B'g) (97" A%9)" (g ' B'g)’

= (g7 ' A%g) (g7 'BYg)(g 'A% g) (g7 B"g)

_ g—lAsiBtjAskBtl‘g

Denote by 2 = si,y = tj, v = sk and w = tf. Then, gMg~' = A*BYA"B". Let
M, = gMg~"'. Obviously, M; € G and M; = A*BYA"B". We have transformed
the generalized discrete logarithm problem of PSL(2,p) with respect to (C, D) to the
generalized discrete logarithm problem of PSL(2, p) with respect to (A, B) which we
are able to solve as described earlier.

To determine an element g for which the conditions C = g~ 'A%g and D = g~ ' B'yg
hold simultaneously, we write the system of equations: gC' = A°g and gD = By, for
some non-negative integers s, t < p. Since, g = (§1 92 ), we obtain a system of equations
ingp,..., g4 and s and ¢ from which an element g is determined. The existence of such
an element ¢ is ensured since PSL(2, p) acts doubly transitively by conjugation on its
(p + 1) Sylow-p subgroups. Then, for any two pairs of p-Sylow subgroups, and hence
for the particular pairs ((A), (B)) and ((C'), (D)), there exists an element g € G such
that ((C), (D)) = ((A)7,(B)?).

The third case in our analysis of hardness of the generalized discrete logarithm prob-
lem in PSL(2,p), with respect to a pair of generators, is when one of the generators
is of order p. Suppose now that PSL(2,p) = (A, B) where |A| = p. Note that the
order of element B can only be divisor of the order of the group p(p* — 1)/2. Given an
element M € PSL(2,p) our goal is to write M in terms of the generators (A, B). In the
construction of a word in A and B that represents element M, we will use the result of
the following proposition.

Proposition 2.2 If G = PSL(2,p) = (A, B) where |A| = p, then G = (A, AB),
where AP = B~1AB.

Proof. Every two non-commuting elements of order p from PSL(2,p) generate
the whole group. So we prove that elements A and A are non-commuting of order
p. Conjugate elements have the same order, so |[A®| = |A| = p. Now, suppose that
elements A and A® commute. Then, A? is in the centralizer of element 4, i.e., AP €
Cq(A) = (A). So, AP = A for some i € {0,..., p — 1}. But then, B normalizes
(A), hence, (A) is a proper normal subgroup of (A, B). But PSL(2,p) is simple, thus
(A, B) can not be all of PSL(2,p), a contradiction to the fact that A and B generate G.
O

The proposition that follows provides an upper bound for the depth of PSL(2, p)
with respect to two generators one of which is of order p and its proof provides an

algorithm for constructing a word in generators A and B that represents a given element
M.

Proposition 2.3 Suppose that G = PSL(2,p) = (A, B), where |A| = p, with no
further assumptions on |B| = m. Then, the depth of G with respect to the generating
tuple (A, B) is less than or equal to four.
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Proof. Let C = AP = B~!'AB. By Proposition (2.2) the group PSL(2.p) is
generated by elements A and C, both of order p. The generalized discrete logarithm
problem can be solved efficiently in PSL(2, p) represented by matrices, with respect
to two generators of order p. By the method described earlier, the generalized discrete
logarithm (i, j, k, ¢) can be found such that M = A'*C7 A*C*. To represent the element
M in terms of the generators A and B we write the following sequence of equalities.

M = AiCI Ak Cf
= AY(B~'AB) A*(B~'AB)"
= A'B 'A'BA*B~1A‘B
= A'B™" 1 A'BA*B™ ' A’B

Therefore, the generalized discrete logarithm of M € PSL(2,p) with respect to
generating tuple (A, B), where |A| =p and |B| =m is (i,m—1,5, 1, k;m—1,¢,1).
It follows that every element M from PSL(2,p) = (A, B), where |A| = p and |B| =
m can be represented as M = A”*' BY1 AT2 BY2 ATs BYs A4 BY+ for some integers
r1,xo, 23,24 € {0,..,p — 1} and y1,92,y3,y4 € {0,...,m — 1}. The proposition
follows. O

The described method for writing element A as a word in generators A and B does
not assure obtaining the shortest possible word that represents A in these generators.

Next, we take a look into a possible strategy for writing an element A of group
PSL(2,p)interms of two generators none of which is of order p. Suppose that we have
an efficient method for constructing an element of order p in terms of the generators A
and B. In the following proposition we will use the notation w,(A, B) to represent a
word in A and B which is of order p as an element of .

Proposition 2.4 If G = PSL(2,p) (A, B) where the orders of A and B are
relatively prime to p, and if P = w,(A, B), is a word in A and B, of order p as an

A,
element of G, then G = (A, P) or G = (B, P).

Proof. Let N be the normalizer in G of (P), i.e. N = Ng({P)). Then, at least
one of the elements A, B is not in V. Otherwise if A, B were both in IV, then (A, B)
would be a subgroup of N, thatis G = (A, B) < N, and therefore we would have
that N = G. This would imply that (P) is a non-trivial, proper, normal subgroup of (i,
contradicting the fact that G is simple. Without loss of generality, suppose that A ¢ N.
Then (A, P) = PSL(2,p), because the only proper subgroups of PSL(2,p) contain-
ing (P) are subgroups of the normalizer of (P). Similarly, if B ¢ N, it follows that
PSL(2,p) = (B,P). O

If A, B and P are as in Proposition 2.4 we can solve efficiently the generalized
discrete logarithm problem with respect to (A, P) since PSL(2,p) = (A, P) and |P| =
p. Therefore, we can solve the generalized discrete logarithm problem with respect to
(A,B).Given M € PSL(2,p) = (A, B) and P = w,(A, B) as in the Proposition 2.4
we can write element M as a word in A, B as follows. Without loss of generality, assume
that A ¢ N¢,. Conjugate element P by element A, i.e., compute P = A~ ' PA. Based
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on the Proposition 2.2, PSL(2,p) = (P, P#). Based on the proof of the Proposition 2.3,
if |A| = s, we have:

]\[ = Pi(PA)ij(PA)/
— PIA*T PIAPRATTIPTA
— w,(A, B)' A" "wy (A, BY wy(A, B)wy(A, B)kA*lw,(A, B)fA

The direct consequence is that the depth of the PSL(2,p) with respect to the generators
both of order relatively prime to p, will depend on the word P = wp(A, B).

We examine a bit further possible attacks to the GDLP for G = PSL(2,p) based on
Proposition 2.4. A word of shortest possible length in A and B to produce an element of
order p is AB or BA. We will consider the case where |A| = |B| =d=(p—1)/2and
|AB| = p. This condition occurs systematically in PSL(2,p), however, unfortunately
for the cryptanalyst, the probability of this occurrence goes Lo zero as p — 0.

We will need some well known facts about the group PSL(2, q),q = p", panodd
prime, which we state below, without proof, as a proposition. In what follows ¢ stands
for Euler’s ¢ function.

Proposition 2.5 Suppose that G = PSL(2.q), g =p™, p anodd prime. Then,

(a) The Sylow-p subgroup of G is elementary abelian of order q,

(b) If x € G isof orderd, then d divides (q—1)/2, ord = p, or d divides (q+ 1)/2,

(¢c) There is a single conjugacy class of subgroups of order (q — 1)/2, and these are
cyclic. Similarly, there is a single conjugacy class of subgroups of order (q+1)/2,
and they are cyclic.

(d) Ifx € Gisof order d # 2 dividing (q + 1)/2 then x belongs to one and only
one cyclic subgroup of G of order (q + 1)/2.

(e) Ifd # 2 divides (q + 1)/2 there are d’(—q,zi—l) conjugacy classes of element of
order d in G.

(f) Ifz € Gisoforder d|(q =+ 1)/2, d # 2, then the centralizer Cei(x) is (x), while
the normalizer N¢((x)) is dihedral of order q £ 1.

We will now examine the very special case where G = PSL(2,p) is generated by
two elements of order (p — 1)/2. Similar results can be derived for the other possible
cases. In what follows, Let X be the set of all elements of order d=(p—1)/2inG.
We will consider the action of G by conjugation on X x X. Note that all pairs (A, B)
ina G—orbit on X x X share almost all critical properties of interest to our problem, as
conjugation by an element g € & induces an automorphism of G. For example if (A, B)
generate & so does (A, B)Y = (A9, BY), for g € G. Similarly, the order of AB is the
same as the order of A9BY = (AB)Y, etc. Thus it suffices to examine one representative
from each orbit of G on X x X.

Since (3 acts transitively by conjugation on the cyclic subgroups of order (p — 1)/2,
without loss of generality, we will select one such subgroup, say C' and one fixed gener-
ator z € C, so that C = (z). Now, Cg(z) ={y € G |zy = ya} = (x) = C. We have
the following consequences of Proposition 2.5:
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Proposition 2.6 If G and X are as above, and d = (p —1)/2, then:

(@) |X|=o(d)p(p+1)/2

(b) Let x be any fixed element of X. In the action of C' = Cg(x) on X by conju-
gation there are exactly ¢(d) orbits of length I, and v = (¢(d)p(p + 1) — 2)/2d
orbits of length d.

(c) Ofthe v orbits O; of length d exactly 2¢(d) — 2 are such that if y € O,
then |zy| = p.

Proof. (a) Since each of the ¢(d)/2 conjugacy classes of elements of order d has
|G|/d = p(p+1) elements, it follows that | X| = [¢(d)p(p + 1)]/2.

(b) € = Cg(x) = (x) has exactly ¢(d) elements y of order d in it, and since these
elements commute with z, the orbit ¥ = {y} and has length 1. If y € X \ C then

(= Cc(y) = (y),and KNC = {1}, hence the orbit y©' has exactly |C'| elements. Thus,
the number of orbits of length d is [(¢(d)p(p+1)) /2—d(d)] /d = [¢(d)(p(p+1)—2] /2d.

(c) We will only give an idea about the proof here. The result follows from calculations
in the center of the group ring ZG. In particular, if {K;}$_, are the conjugacy classes
of G, they form a basis for the center of ZG and K;K; = S} a;jxKy. with the
aij. computable from the character table of ;. We have that X is the sum of the ¢(d) /2
classes { K, } withelements of order d. Thus, in the group ring, the number of elements
in X of order p is the sum of the coefficients of the two classes K, and K,,, in

‘,\{r' K, 7’ '?/2 Ko, = p(lH ) Z(p(d )/2 K,K,, .Since each C'—orbit on X \ C are of

length d, we further divide by d for the number ot C'—orbits. O

We are now able to state a proposition which is not of much help to the cryptanalyst,
but which lends evidence to the notion that strong generators may be possible for a GDLP
based system.

Proposition 2.7 Let G = PSL(2,p) andletd, X and x € X be as above. If we select
a second element y € X randomly, then the probabzltrv that the order of xy is p is

2(¢(d)—=1)(p—1) 2
W which is of course asymptotic to 2 p asp — o0

Proof: Having fixed x € X, by Proposition 2.6 the number of elements y € X such
that [zy| = pis 2(¢(d) — 1)d. Since | X| = %‘” . \?_11 we have:

ey = 20 =1)d 46 -1)d _ 2Ao(d) - D)(p—1) 2
Prilepl =p} = —;_).p@m oDpp+1)  sldpp+1) p

hence the result. O

Itis clear of course that if (4, B) € X x X with |AB| = p, then (A, B) = G.
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3. Relations

By solving the generalized discrete logarithm problem for a finite group with respect to
a given set of generators we are factorizing group elements in terms of the generators.
By equating two different factorizations of the same group element, we obtain a relation.
This observation holds in any finite group as we discuss in the next section.

Let G be a finite group generated by «, ..., a4, i.e., G = (aq,...,y). Denote by
a = (ay,..., ) the ordered tuple of generators of the group G. For a given 3 € G,
assume that

k

B = H (a7 ..af™)

=1

e, # = «, where = = (xy11,...,Z14,...,Zk1,...,2p). Recall that z =

'
(T11,...,: Clfyenny g . Tt ), the generalized discrete logarithm with respect to the
generators v = ((,yl §54u u,), is not unique, in fact there will exist infinitely many dis-
tinct ¥ = (Y11ye s Yty -y Ysis- -+ Yst) such that 3 = a¥ = [[7_, o ... a}". For

any such y we have.

i T Yi Yit
”n] ooyt = ay't oot

i=1 =1

In this way we obtain non-trivial relations among the generators. Further, by collect-
ing different relations we may obtain a presentation of the group : G = (X|R), where
X is the set of generators, and ? a set of relations of the above type, sufficiently many
to completely determine the group.

Relations of particular interest in cryptography are those which represent the identity
element of the group, that is of the form 1 = a word in the generators. Moreover, in a
finite group & we can always convert a presentation of the form G = (X|R), into one of
the form &' = (X|R'), where R’ is a set of relations of the type: Hle oft . .aft =
l(;.

. k 1 oy 4
The length of word w = [[;_, 7" ...a{" in the symbols «,...,a;, where

the x;; are non-negative integers, is defined to be the integer |w| = Zf:l 23:1 Biifs
Moreover, if w; and w, are words in the symbols «ay,...,a; and p: w; = wy isa
relation, the length of the relation is defined to be the integer |p| := |w; | + |wy].

If GG is a finite group generated by vy, . .., i, a relation p in the o, . . ., o is said to
be short if |p| = O(log (|G])), otherwise p is said to be long. Relations of importance
to cryptographic hash functions of the Tillich-Zémor type are those which are short.

We turn to our group of interest, P.SL(2, p), and examine the length of some relations
there.

Let G = PSL(2,p), and consider the elements A = (} 1), B = (1)) in G. The
matrices A and B are both of erder p, non-commuting and thus generate PSL(2, p). As
we have seen earlier, the depth of P.SL(2, p) with respect to the generating tuple (A, B)



