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Preface

It is a great pleasure and an honour to write this introduction to the Proceedings
of the Brezis-Browder Conference which was held at Rutgers, The State University
of New Jersey from October 14th to October 18th 2001.

The Conference had two purposes: it was conceived and meant to honour two
great living mathematicians, Haim Brezis and Felix Browder who have had and
continue to have, each in his own way and through their intense collaboration, a
profound impact on the fields of Partial Differential Equations, Functional Analysis,
and Geometry.

This conference was also conceived as a gathering (with appropriate timing and
momentum) of mathematicians with interests in non compact variational problems,
pscudo-holomorphic curves, singular and smooth solutions to problems admitting a
conformal (or some group) invariance, Sobolev spaces on manifolds, and Configura-
tion spaces. In addition S. Klainerman organized a day around Einstein equations
and related topics.

The speakers and participants came from all around the world: the U.S.,
France, Italy, Germany, China, Israel, and from the Third World (Tunisia, Mauri-
tania).

I would like to point out that Haim Brezis and Felix Browder, besides their
outstanding contribution to mathematics, have also contributed in an exceptional
way to the thriving of the mathematical community. The students of H. Brezis
have multiplied throughout countries and continents, in an almost biblical way
(for a mathematician). The contribution of Felix Browder to the mathematical
community is underlined by the number of conferences and symposia, seminars etc.
which he has organized and also by his role as president of the AMS.

Both of them also have the very special distinction that they have engaged,
directly and indirectly, in quite successful efforts to promote mathematics in areas
of the world where it used to have little impact (e.g. North and Black Africa).

The Conference, with respect to its original design, was a success.

However, it was overshadowed by the tragic events of September 11th 2001,
which filled the hearts of all speakers, participants, organizers with a deep sense of
sadness and delusion.

After September 11th, all speakers and participants thought of this conference
also in a new way, as a collective act of protest, of friendship, of knowledge. It was
rededicated to the memory of the victims of September 11th, 2001.

One year and a half later, I think that we have achieved our purpose, which
in the meantime had become at least threefold: the one which we have chosen
early on, that is to honour Haim and Felix and to discuss noncompact phenomena,
Einstein equations etc; the one which we came to choose: to honour the memory
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of the victims of September 11th, and then also the simpler one of going on with
continuous questioning in Science, in a friendly and positive atmosphere, through
our talks, papers, seminars, and conferences.

For the organizing Committee,
Abbas Bahri
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Conformal Deformations of Riemannian Metrics via
“Critical Point Theory at Infinity” : the Conformally Flat
Case with Umbilic Boundary

Mohameden Ould Ahmedou

Dedicated to Haim Brezis and Feliz Browder, and to the memory of the victims of 9/11

ABSTRACT. In this paper we prove that every Riemannian metric on a locally
conformally flat manifold with umbilic boundary can be conformally deformed
to a scalar flat metric having constant mean curvature. This result can be seen
as a generalization to higher dimensions of the well known Riemann mapping
Theorem in the plane.

1. Introduction

In [16], José F. Escobar raised the following question: Given a compact Rie-
mannian manifold with boundary, when it is conformally equivalent to one that has
zero scalar curvature and whose boundary has a constant mean curvature ? This
problem can be seen as a “generalization” to higher dimensions of the well known
Riemannian mapping Theorem. The later states that an open, simply connected
proper subset of the plane is conformally diffeomorphic to the disk. In higher di-
mensions few regions are conformally diffeomorphic to the ball. However one can
still ask whether a domain is conformal to a manifold that resembles the ball into
ways : namely, it has zero scalar curvature and its boundary has constant mean
curvature. In the above the term “generalization” has to be understood in that
sens. The above problem is equivalent to finding a smooth positive solution to
the following nonlinear boundary value problem on a Riemannian manifold with
boundary (M™, g), n > 3:

—Agu + o 2) Ru=0, u>0 in M:;
4(n—1)""9 )
Oyu + ”T*thu =Q(M, GM)uﬁ, on OM.

(P)

where R is the scalar curvature of M, h is the mean curvature of M , V is the outer

normal vector with respect to g and Q(M, dM) is a constant whose sign is uniquely
3 . o — i ¥

determined by the conformal structure. Indeed if g =ur—2g, then the metric g has

Key words and phrases. Critical trace Sobolev exponent, curvature, conformal invariance,
lack of compactness, critical point at infinity .

© 2004 American Mathematical Society



2 MOHAMEDEN OULD AHMEDOU

zero scalar curvature and the boundary has constant mean curvature with respect
to g.

Solutions of equation (P) correspond , up to a multiple constant, to critical
points of the following functional J defined on H!(M) \ {0}

n—1
n—2

(jM (fvgu|2 + 4(7;;21) Ry “’2> dVy + 232 [0 g UZdog)
1
Jonr 1u 2=z do,

where dV;; and do, denote the Riemannian measure on M and M induced by the
metric g.

The regularity of the H' solutions of (P) was established by P. Cherrier [13];
and related problems regarding conformal deformations of metrics on manifold with
boundary were studied in (1] ,[8] [11] , [14], [19] , [20][21], [22] , [23], [26] , [29]
and the references therein.

The exponant 2(;‘:21) is critical for the Sobolev trace embedding H'(M) —
L7(OM). This embedding being not compact , the functional J does not satisfy
the Palais Smale condition. For this reason standard variational methods cannot
be applied to find critical points of J.

Following the original arguments introduced by T. Aubin [2], [3] and R. Schoen
[31] to prove Yamabe conjecture on closed manifolds, Escobar proved the existence
of a smooth positive solution u of (P) on (M™, g),n > 3 for many cases. To state
his results we need some preliminaries:

Let H denote the second fondamental form of OM in (M, g) with respect to
the inner normal. Let us denote the traceless part of the second fundamental form
by U that is U(X,Y) = H(X,Y) — hyg(X,Y)

DEFINITION 1.1. A point ¢ € OM is called an umbilic point if U = 0 at q.
OM is called umbilic if every point of OM is umbilic.

1 J(u) =

Regarding the above problem Escobar proved the following Theorem (16, 18]:

THEOREM 1.1. Let (M", g) be a compact Riemannian manifold with boundary,
n > 3. Assume that M™ satisfies one of the following conditions:

: (i) n>6 and M has a nonumbilic point on OM

2 (i) n > 6 and M is conformally locally flat with umbilic boundary
: (i) n=4,5 and OM is umbilic

: (vi)n=3

then there exists a smooth metric u=—=2 g, u > 0on M of zero scalar curvature and
constant mean curvature on OM .

In his proof Escobar uses strongly an extension of the positive mass Theorem
of R. Schoen and S.T. Yau [33], [32] to some type of manifolds with boundary.
Such an extension was proved by Escobar in [17]. Besides the proof of T.Aubin
and R.Schoen of the Yamabe conjecture, another proof by A. Bahri [5] and A.Bahri
and H. Brezis [6] of the same conjecture is available by techniques related to the
Theory of critical point at Infinity of A. Bahri [4].

We plan to give a complete positive answer to the above problem based on
the topological argument of Bahri-Coron [7], as Bahri and Brezis did for the Yam-
abe conjecture. In this first part we study the case where the manifold is locally
conformally flat with umbilic boundary. Namely we prove the following Theorem
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THEOREM 1.2. Suppose that (M".g), n > 3 is a compact locally conformally
flat manifold with umbilic boundary, then equation (P) has a solution.

Let us observe that while the solution obtained by Escobar is a minimum of
J, our solution is in general, a critical point of J of higher Morse index, more
precisely we have the following characterization of solutions obtained by Bahri-
Coron existence scheme( see [12]) :

THEOREM 1.3. The solution u obtained in Theorem 1.2 satisfies, for some
mteger po:

1

2 (1) pg S < J(u) < (po + 1)ﬁ5

2 (i) ind(J,u) < (po+ 1)(n — 1) + po, ind(J,u) + dimkerd? J(w) > po(n —
1) + po l

s (i1i) u induces some difference of topology at the level pész g

where ind(J,u) is the Morse index of J at u, and S = 21="0, 1, where w,
is the volume of the n — 1 dimensional unit sphere. Moreover, if (P ) has only
nondegenerate solutions, ind(J,u) = (n — 1)py + po.

The remainder of the paper is organized as follows: in section 2 we construct
some “almost solutions” which are solutions of the “problem at Infinity”. In section
3 we collect some standard results regarding the description of the lack of compact-
ness and some local deformation Lemma. In section 4 we perform an expansion of
J at 'Infinity’ and we give the proof of Theorem 1.2 in section 5. Lastly we devote
the appendix to establish some technical Lemma and to recall some well known
results.

Acknowledgements

This paper is dedicated to Prof. H. Brezis and F. Browder and to the memory of
the Victims of 9/11. The author is indebted to Pr. Abbas Bahri for teaching him
his Theory of critical point at Infinity and he is gratefull to Pr. Antonio Ambrosetti
for his interest in his work and his constant support.

2. Construction of “almost solutions”

In this paper we assume that (M",g) is a compact Riemannian manifold with
boundary and dimension n > 3 . Let Rpq and R = gPIR,, be the Ricci curvature
and the scalar curvature, respectively; let hij and h = ﬁg”‘ h;; be the second
fundamental form of the boundary of M, M and the mean curvature , Tespectively.
Let g = une g be a metric conformally related to g. We denote by a tilde all
quantities computed with respect to the metric §. The transformation law for the
scalar curvature is

~ 4(n—-1) Lu
2 R= — ——
2) n—2 =t
where L is the conformal Laplacian L = A — 4(’;‘:21)13 on M; while the transfor-

mation law for the mean curvature is

3) - 2 Bu

n—2 U 711‘2

where B is the boundary operator B = % + %h on OM.
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Consider now the following eigenvalue problem on (M, g) :

(E) {Lgu =Au on M

Byu=0 on OM

Let A the first eigenvalue of (E).

DEFINITION 2.1. We say that a manifold M is of positive(negative, zero) type
if Ar > 0(< 0,=0).

As it is well known the existence problem is easy when the manifold is of
negative or zero type, so we treat only in this paper the case of manifold of positive
type.

Now we construct some almost solutions of (P), which will play a central role in
the description of the lack of compactness.

Let f1 denote a positive eigenfunction corresponding to the first eigenvalue
of (E) , and consider g; = (fl)ﬁg then , according to (2) and (3) we have:
Ry, > 0 and hy, = 0 on OM. We can work with g; instead of g, but for simplicity
we still denote it by g. Let a € 9M; since M is a compact locally conformally
flat manifold one can find a neighborhood of a, U(a) D BF])\I((L) , p > 0 uniform
and a conformal diffeomorphism ¢ which maps Blj)” (a) into R™ with ¢(0) = a .
Therefore, denoting .q();the flat metric on R™, there exist a positive function wu,
such that ¢*(go) = ug > g. Since the boundary is umbilic, w(OM N Bf])”(a)) has
to be a piece of sphere or a piece of a hyperplane (See [34]) and since spheres and
hyperplanes are locally conformal to each other, we can assume without loss of
generality that 9B (0) NORY C ,9(0]\[0Bé”((1)) and ¢(ATJHB£](@)) C R%} . Since
dBS(0)N JRY has zero mean curvature in By, we deduce from (3) that % =0
on dM N Bl],” (a). We extend u, to be a smooth positive function on M such that
%"7 =0 on OM and u, = 0 on M \ Bé\é(a). Consider now the conformal metric
g0 = = g, then go has the property that hz = 0 and it is Euclidean in B/[]” (a).
Moreover this metric can be chosen to depend smoothly on a (see [5]).

For a € OM, define the function:

n—2

] A7
6u,)\ (:l/) =€ ; . n_2
(14 Ae)? + N[a[2) 7

where (2/,2") = p(y), and € is chosen such that §,  satisfies the following equation

—Agu=0, in B;?[ N M;
o,u = 6{;’;?, on B;}[ NoM
Set 5,1)\ = Wq Uq 04, x Where w, is a cutoff function w, = 1 on Bg[(a) and w, =
0 on M\ Byl
We define now a familly of almost solutions ¢, » to be the unique solution of
—Lgu=0, in ]\[7
Bgyu = Sﬁ on OM

Let us recall that the operators L, and B, are conformally invariant under the
conformal change of metrics, namely we have:
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LEMMA 2.1. [16]
Let i € C?*(B,(a)), we have

n+2

Lg (an) = U;;z Lﬁ() (1/])

and

Bg(ua"/«’) = UFBEUW’
In the remainder of this section we establish some properties of our almost
solutions ¢, .
LEMMA 2.2. There are two positive constants C and B , such that for all
a € OM and X\ > B, we have
C

Par — (Sa,)\# K s
00 Az

PROOF. , X
Let Hox = A"Z (040 — ba.0), we have

n—g 2t2

LyH,y=\"T" Lg (Waabax) = AT ul? Ly (waba )

Since on B, , w, = 0, we deduce that on B, we have L, H, » = 0, whereas on
M \ B, there holds LyH, ) <C.
From another part

By Hox =A% [By@an — By (Wattaba )] = AT [or  —ui? By (wabar)]

on B,(a) N OM, w, = 1, therefore BgHyx = 0, while on M \ B, there holds
By Hy n < C. Thus our Lemma follows from Lemma 6.3 quoted in the appendix.
|

LEMMA 2.3. There are two positive constants C and B , such that for all
a € OM and \ > B, we have

Pa,\ > 3 71;2

PRrOOF.
Using Lemma 2.2, we know that if p; < p is chosen small enough, independent
of A, the following inequality holds on B(a, p1)

Then we have
Ly(pan — %) <0 in M
e
(4) @a,)\ == )\é Z 0, on 21

%(‘Pa,/\ = /\n%) >0 on X,

Then by the hopf maximum principle, we deduce from (4) that

C
Pa, A 2 e forx € M

2
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LEMMA 2.4. Let 6 > 0 be given. There are positive constants C and B, such
that the following estimates hold, provided A > B

" 2= dx C .
/{)1\1 By o pardo, —T 2 /RM1 (ERTEEE < e forae OM
2(n-1) 2(n_1) dx C
vl —/ SR SN or a € OM
/01\1 A ‘ gt (L4 [z2)n=t] = An-2 e
: (i)
- 9 .
- Pay A Pagadog > e foray,as € OM
2 (vi)
[)]\[ Bg Pa,x ‘Pa‘/\dag = (1 s 9) /(‘)AI :1 f\‘paz Adag
PROOF.

Proof of (i)
From the definition of ¢, », we derive:

/ Bg Pa,x ‘igaAdUg = / (Wa 6@.)\ua);z—2 “Pa,/\do—g
JOM oM

Using Lemma 2.2, we deduce:

(5) / Bg Pa,\ ¢a.AdUg
oM
] 2(n—1) 1 o

= ( Wa a )\Ua) . dUg St O( o 2) (wa (Sa,/\ua) w2 do—g
OMNB3, A dMNBy,
(n—1) 1
/ (6(1,)\)2,[ = dv + O( — 2)/ (Wa 0g g )72 dvg, +O(/\n~1)
aMNB, A OMNBa,

2(n—1) ) dx 1
= ¢ oz N
/Rnfl (1+|x|2)n-1 (/\" 2)

The proof of (ii) is essentially reduced, up to minor differences to the same
computations involved in the proof of (ii).

Proof of (iii)

From Lemma 2.3 we deduce

s _n_ 1 >
n—2 2
/BM Par 2 Paz adog 2 C n—2 /az», wal 87y

Then from Lemma 2.2 and Lemma 2.3 we derive

/ 4,0ﬁ Pa, \do > %1 / 5”%50'0
A Pag \QOg 2 P aa
558 ay 2 O n—2 B, (a)NOM ap, A" g

1 / 1
> 572 do o = O0(——=
O =2 B, (a)noM ap, A7 g (/\n72)

I
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Proof of (vi)

Bg Pay, A Pag, A dVUSI
JOM

ST—2
— / (5@1./\ (,9(12.)\(1’1)5]
JOM '

. 1
= [ e O B[ e
dMNB, JOM\B,

e 1 N 1]
99;1,/2\ 99(12-,/\de + O( n—> ) / 6(:,1,)2\ 9902‘)\03{79 + O()\n‘1 )
1 A OM

w[3

I
S~
=

. 2
= n—3

@ﬁ (fjazy)\dvg Pas,x + O(/\T) / 5u1,)\ 90’127/\d0§o
IOM

. 1 [ =z 1
Payx Paz Advg + O(T,g)/ O, 2 day adog, + O(W)
onr o A oM

2

L
/

Now from Lemma 6.1 in the Appendix we deduce :

1 s on
O( n—2 )/ 641; 6a2‘)\d(f§0 = 0 (/ ()alj\ (Saz,/\dgﬁ(,)
Az OMNB,(ay) oM

Therefore using (iii) we have

/ Bg(pal.)\ Spag,/\dvg = / 99? @az,)\dvg(l + 0(1))
oM JOM

The proof of (vi) and the proof of Lemma 2.4 are thereby completed. m

3. Some standard facts

We recall that solutions of Problem (P) arises , up to a constant, as critical
points of the functional .J is defined by

n—1

n—2 S -
J(u) = (/ —Lyuudvu, + Byuu dag> (/ u%)
Mo Jon oM

where u belongs to X defined as follows:

> ={ue H'(M),u> 0, [ul =1}

Let us observe that 1 is invariant by the flow of —a.J.

The functional J is known to not satisfy Palais Smale condition(PS for short) ,
which leads to the failure of classical existence mecanism. In order to describe this
failure we need some notation.

Fore >0and p> 1, let

Vipe) =
u € ¥*such that 3(ay, - ,a,) € (OM)P and 3 (A1,++-, Ap) € (R%)Psuch that
'u — “%a% b <e with \; > lande;; < e

n—2
2

where g;; = | — L and d denotes the geosedic distance.
SE 2 A d(a',a,)z
xoH 3N d(aisa,



