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Introduction

A representation of a discrete group G in the category P(F') of finite di-
mensional vector spaces over a field F' could be defined as a pair (V,p: G —
Aut(V)) where V € P(F) and p is a group homomorphism from G to the
group Aut(V') of bijective linear operators on V. This definition makes sense
if we replace P(F) by more general linear structures like P(R), the category
of finitely generated projective modules over any ring R with identity.

More generally, one could define a representation of G in an arbitrary cat-
egory C as a pair (X,p : G — Aut(X)) where X € ob(C) and p is a group
homomorphism from G to the group of C-automorphisms of X. The repre-
sentations of G in C also form a category Ce which can be identified with the
category [G /G, C] of covariant functors from the translation category G/G of
the G-set G/G (where G/G is the final object in the category of G-sets (see
1.1). The foregoing considerations also apply if G is a topological group and
C is a topological category, i.e. a category whose objects X and Hom¢(X,Y)
are endowed with a topology such that the morphisms are continuous. Here,
we have an additional requirement that p : G — Aut(X) be continuous. For
example, G could be a Lie group and C the category of Hilbert spaces over C,
in which case we have unitary representations of G.

It is the aim of this book to explore connections between Cg and higher al-
gebraic K-theory of C for suitable categories (e.g. exact, symmetric monoidal
and Waldhausen categories) when G could be a finite, discrete, profinite or
compact Lie group.

When C = P(C), (C the field of complex numbers) and G is a finite or
compact Lie group, the Grothendieck group Ko(Cg) can be identified with
the group of generalized characters of G and thus provides the initial contact
between representation theory and K-theory. If F' is an arbitrary field, G a
finite group, P(F)¢ can be identified with the category M(FG) of finitely
generated F'G-modules and so, Ko(P(F)g) = Ko(M(FG)) = Go(FG) yields
K-theory of the group algebra F'G, thus providing initial contact between
K-theory of P(F)g and K-theory of group algebras (see 1.2). This situation
extends to higher dimensional K-theoretic groups i.e. for all n > 0 we have
Kn(P(F)g) 2 Kn(M(FG)) = Gn(FG) (see 5.2).

More generally, if R is any commutative ring with identity and G is a finite
group, then the category P(R)¢ can be identified with the category Pr(RG)
of RG-lattices (i.e. RG-modules that are finitely generated and projective
over R) and so, for all n > 0, K,,(P(R)¢) can be identified with K, (Pr(RG))
which, when R is regular, coincides with K,(M(RG)) usually denoted by
Gn(RG) (see (5.2)B).

When R is the ring of integers in a number field or p-adic field F' or more
generally R a Dedekind domain with quotient field F' or more generally still
R a regular ring, the notion of a groupring RG(G finite) generalizes to the
notion of R-orders A in a semi-simple F-algebra ¥ when char(F") does not
divide the order of G and so, studying K-theory of the category Pr(A) of A-
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lattices automatically yields results on the computations of K-theory of the
category Pr(RG) of RG-lattices and so, K-theory of orders is appropriately
classified as belonging to Integral representation theory.

Now the classical K-theory (Ko, K1, K2, K_,) of orders and grouprings
(especially Ky and K7) have been well studied via classical methods and doc-
umented in several books [20, 39, 159, 168, 211, 213] and so, we only carefully
review the classical situation in Part I of this book (chapters 1-4), with clear
definitions, examples, statements of important results (mostly without proof-
s) and refer the reader to one of the books or other literature for proofs. We
include, in particular, classical results which have higher dimensional versions
for which we supply proofs once and for all in the context of higher K-theory.
Needless to say that some results proved for higher K-theory with no classi-
cal analogues invariably apply to the classical cases also. For example, there
was no classical result that Kz(A),G2(A), are finite for arbitrary orders A
in semi-simple algebras over number fields, but we prove in this book that
Kon(A), Gopn (A), are finite for all n > 1, thus making this result also available
for Ka(A).

Some of the impetus for the growth of Algebraic K-theory from the begin-
ning had to do with the fact that the classical K-group of grouprings housed
interesting topological /geometric invariants, e.g.

(1) Class groups of orders and grouprings (which also constitute natural
generalizations to number theoretic class groups of integers in number
fields) also house Swan-Wall invariants (see (2.3)¢ and [214, 216]) etc.

(2) Computations of the groups Go(RG), R Noetherian, G Abelian is con-
nected with the calculations of the group ‘SSF’ (see (2.4)% or [19]) which
houses obstructions constructed by Shub and Francs in their study of
Morse-Smale diffeomorphisms (see [19]).

(3) Whitehead groups of integral grouprings house Whitehead torsion which
is also useful in the classification of manifolds (see [153, 195]).

(4) If G is afinite group and Orb(G) the orbit category of G (an ‘EI’ category
(see 7.6)). X a G-CW-complex with round structure (see [137]), then
the equivariant Riedemester torsion takes values in Wh(Q orb(G)) where
Wh(Q orb(@)) is the quotient of K7(QOrb(G)) by subgroups of “trivial
units” see [137].

(5) K2 of integral grouprings helps in the understanding of the pseudo-
isotopy of manifolds (see [80]).

(6) The negative K-theory of grouprings can also be interpreted in terms of
bounded h-corbordisms (see (4.5)F or [138]).

It is also noteworthy that several far-reaching generalizations of classical
concepts have been done via higher K-theory. For example, the K-theoretic



definition of higher dimensional class groups C¢,(A)(n > 0) of orders A gen-
eralize to higher dimensions the notion of class group C#(A) of orders and
grouprings which in turn generalizes the number-theoretic notion of class
groups of Dedekind domains and integers R in number fields (see 7.4). Note
that C¢1(A) for A = RG is intimately connected with Whitehead torsion (see
7.4 or [159]) and as already observed C¢(A) = C¥y(A) houses some topologi-
cal/geometric invariants (see (2.3)¢).

Moreover, the profinite higher K-theory for exact categories discussed in
chapter 8 is a cohomology theory which generalizes classical profinite topolog-
ical K-theory (see [199]) as well as K-theory analogues of classical continuous
cohomology of schemes rooted in Arithmetic algebraic geometry.

Part I (chapters 5 to 8) is devoted to a systematic exposition of higher
algebraic K-theory of orders and grouprings. Again, because the basic higher
K -theoretic constructions have already appeared with proofs in several books
(e.g. [25, 88, 198]), the presentation in chapters 5 and 6 is restricted to a
review of important results (with examples) relevant to our context. Topics
reviewed in chapter 5 include the ‘plus’ construction as well as higher K-theory
of exact, symmetric monoidal and Waldhausen categories. We try as much
as possible to emphasize the utility value of the usually abstract topological
constructions.

In chapter 7, we prove quite a number of results on higher K-theory of
orders and grouprings. In (7.1)4 we set the stage for arbitrary orders by
first proving several finiteness results for higher K-theory of maximal orders
in semi-simple algebras over p-adic fields and number fields as well as higher
K-theory of associated division and semi-simple algebras.

In (7.1)B, we prove among other results that if R is the ring of in-
tegers in a number field F; A as R-order in a semi-simple F-algebra X,
then for all n > 0, K,(A),G,(A) are finitely generated Abelian groups,
SKn(A), SGn(A), SK,(A,) and SG,,(A,) are finite groups (see [108, 110, 112,
113]) and SG,(RG) are trivial (see [131]) where G is a finite group. In 7.2
we prove that rank K,(A) = rank G,(A) = rank K,(I') if I' is a maximal
R-order containing A, see [115]. We consequently prove that for all n > 1,
K2, (A), G2, (A) are actually finite groups. Hence for any finite group G,
Ko, (RG), G, (RG) are finite (see (7.2)8 or [121)).

Next, we obtain in 7.3 a decomposition (for G Abelian)

Gn(RG) 2 ®G,(R < C >) for all n > 0 where R is a Noetherian ring, and
C ranges over all cyclic quotients of G and R < C >= RC|C|(|—éT|), C|c| being
a primitive |C|*® root of unity (see [232]). (This decomposition is a higher
dimensional version of that of Go(RG) (see (2.4)4.) The decomposition of
Gn(RG) is extended to some non-Abelian groups e.g. dihedral, quaternion
and nilpotent groups (see [231, 233]). We conclude 7.3 with a discussion of a
conjecture due to Hambleton, Taylor and Williams on the decomposition for
G(RG), G any finite groups (see [76]), and the counter-example provided for
this conjecture by D. Webb and D. Yao (see [235].



Next, in 7.4 we define and study higher-dimensional class groups C#,(A)
of R-orders A which generalize the classical notion of class groups C¢(A)(=
Clo(A)) of orders. We prove that V n > 0, C¢,(A) is a finite group and
identify p-torsion in C¥,_1(A) for arbitrary orders A (see [102]) while we
identify p-torsion for all C¥y,(A) when A is an Eichler or hereditary order
(see [74, 75]).

In 7.5, we study higher K-theory of grouprings of virtually infinite cyclic
groups V in the two cases when V = G x, T, the semi-direct product of a
finite group G (of order r, say) and an infinite cyclic group T =< t > with
respect to the automorphism o : G — G g — tgt~! and when V = Go-y G,
where the groups G; = 0,1 and H are finite and [G; : H| = 2. These groups
V are conjectured by Farrell and Jones (see [54]) to constitute building blocks
for the understanding of K-theory of grouprings of an arbitrary discrete group
G - hence their importance. We prove that when V = G x4 T, then for all
n >0, G,(RV) is a finitely generated Abelian group and that NK, (RV) is
r-torsion. For V' = Go- g G we prove that the nil groups of V' are |H|-torsion
(see [123]).

The next section of chapter 7 is devoted to the study of higher K and
G-theory of modules over ‘EI’-categories. Modules over ‘EI’-categories con-
stitute natural generalizations for the notion of modules over grouprings and
K-theory of such modules are known to house topological and geometric in-
variants and are also replete with applications in the theory of transformation
groups (see [137]). Here, we obtain several finiteness and other results which
are extension of results earlier obtained for higher K-theory of grouprings of
finite groups.

In 7.7 we obtain several finiteness results on the higher K-theory of the
category of representations of a finite group G in the category of P(I") where
I' is a maximal order in central division algebra over number fields and p-
adic fields. These results translate into computations of G, (I'G) as well as
lead to showing via topological and representation theoretic techniques that
a non-commutative analogue of a fundamental result of R.G. Swan at the
zero-dimensional level does not hold (see [110]).

In chapter 8, we define and study profinite higher K and G-theory of exact
categories, orders and grouprings. This theory is an extraordinary cohomolo-
gy theory inspired by continuous cohomology theory in algebraic topology and
arithmetic algebraic geometry. The theory yields several /-completeness the-
orems for profinite K and G-theory of orders and grouprings as well as yields
some interesting computations of higher K-theory of p-adic orders otherwise
inaccessible. For example we use this theory to show that if A is a p-adic order
in a p-adic semi-simple algebra ¥, then for all n > 1, K, (A)s, G, (A)e, Kn (%),
are finite groups provided ¢ is a prime # p. We also define and study con-
tinuous K-theory of p-adic orders and obtain a relationship between profinite
and continuous K-theory of such orders (see [117]).

Now if S is the translation category of any G-set S, and C is a small category,
then the category [S,C] of covariant functors from S to C is also called the



category of G-equivariant C-bundles on S because if C = P(C), then [S, P(C)]
is just the category of G-equivariant C-bundles on the discrete G-space S so
that Ko[S,P(C)] = K§(S,P(C)) is the zero-dimensional G-equivariant K-
theory of S. Note that if S is a G-space, then the translation category S of S
as well as the category [S,C] are defined similarly. Indeed, if S is a compact
G-space then K§(S,P(C)) is exactly the Atyah-Segal equivariant K-theory
of S (see [184]).

One of the goals of this book is to exploit representation theoretic techniques
(especially induction theory) to define and study equivariant higher algebraic
K-theory and their relative generalizations for finite, profinite and compact
Lie group actions, as well as equivariant homology theories for discrete group
actions in the context of category theory and homological algebra with the
aim of providing new insights into classical results as well as open avenues for
further applications. We devote Part III (chapters 9 - 14) of this book to this
endeavour.

Induction theory has always aimed at computing various invariants of a
given group G in terms of corresponding invariants of certain classes of sub-
groups of G. For example if G is a finite group, it is well know by Artin
induction theorem that two G-representations in P(C) are equivalent if their
restrictions to cyclic subgroups of G are isomorphic. In other words, given
the exact category P(C), and a finite group G, we have found a collection
D(P(C),G) of subgroups (in this case cyclic subgroups) of G such that two
G-representations in P(C) are equivalent iff their restrictions to subgroups in
D(P(C), G) are equivalent. One could then ask the following general question:
Given a category A and a group G, does there exist a collection D(A,G) of
proper subgroups of G such that two G-representations in A are equivalent if
their restrictions to subgroups in D(A, G) are equivalent?

As we shall see in this book, Algebraic K-theory is used copiously to answer
these questions. For example, if G is a finite group, T' any G-set, C an exact
category, we construct in 10.2 for all n > 0, equivariant higher K-functors.

Kg(—,QT)v KE(—,C,T),KS(—,C)

as Mackey functors from the category GSet of G-sets to the category Z-
Mod of Abelian groups (i.e. functors satisfying certain functorial proper-
ties, in particular, categorical version of Mackey subgroup theorem in rep-
resentation theory) in such a way that for any subgroup H of G we iden-
tify K¢(G/H, M(R)) with K,(M(RH)) := G,(RH),KS(G/H,P(R)) with
Kn(Pr(RH)) := G,(R,H) and P¢(G/H,P(R),G/e) with K,,(RH) for all
n > 0 (see [52, 53]). Analogous constructions are done for profinite group
actions (chapter 11) and compact Lie group actions (chapter 12), finite group
actions in the context of Waldhausen categories, chapter 13, as well as e-
quivariant homology theories for the actions of discrete groups (see chapter
14).

For such Mackey functors M, one can always find a canonical smallest class
Uy of subgroups of G such that the values of M on any G-set can be computed



from their restrictions to the full subcategory of G-sets of the form G/H with
H € Ujps. The computability of the values of M from its restriction to G-sets of
the form G/H, H € Uy, for finite and profinite groups is expressed in terms of
vanishing theorems for a certain cohomology theory associated with M (Uay)
- a cohomology theory which generalizes group cohomology. In 9.2, we discuss
the cohomology theory (Amitsur cohomology) of Mackey functors, defined on
an arbitrary category with finite coproducts, finite pullbacks and final objects
in 9.1 and then specialize as the needs arise for the cases of interest-category
of G-sets for G finite (in chapter 9 and chapter 10), G profinite (chapter 11) -
yielding vanishing theorems for the cohomology of the K-functors as well as
cohomology of profinite groups (11.2) (see [109]).

The equivariant K-theory discussed in this book yields various computa-
tions of higher K-theory of grouprings. For example apart from the result
that higher K-theory of RG (G finite or compact Lie group) can be comput-
ed by restricting to hyper elementary subgroups of G (see 10.4 and 12.3.3)
(see [108, 116]), we also show that if R is a field k of characteristic p and G a
finite or profinite group, then the Cartan map K, (kG) — G, (kG) induces an
isomorphism Z(%) ® K, (kG) = Z(%) ® Gn(kQG) leading to the result that for
all m > 1, K2, (kG) is a p-group for finite groups G. We also have an interest-
ing result that if R is the ring of integers in a number field, G a finite group
then the Waldhausen K-groups of the category (Chy(M(RG),w) of bounded
complexes of finitely generated RG-modules with stable quasi-isomorphisms
as weak equivalences are finite Abelian groups.

The last chapter (chapter 14) which is devoted to Equivariant homology the-
ories, also aims at computations of higher algebraic K-groups for grouprings
of discrete groups via induction techniques also using Mackey functors. In
fact, an important criteria for a G-homology theory HS : GSet — Z-Mod is
that it is isomorphic to some Mackey functor: GSet — Z-Mod. The chapter
is focussed on a unified treatment of Farrell and Baum-Connes isomorphism
conjectures through Davis-Liick assembly maps (see 14.2 or [40]) as well as
some specific induction results due to W. Liick, A. Bartels and H. Reich (see
14.3 or [14]). One other justification for including Baum-Connes conjecture in
this unified treatment is that it is well known by now that Algebraic K-theory
and Topological K-theory of stable C*-algebras do coincide (see [205]). We
review the state of knowledge of both conjectures (see 14.3, 14.4) and in the
case of Baum-Connes conjecture also discuss its various formulations including
the most recent in terms of quantum group actions.

Time, space and the heavy stable homotopy theoretic machinery involved
(see [147]) (for which we could not prepare the reader) has prevented us from
including a G-spectrum formulation of the equivariant K-theory developed in
chapters 10, 11, 12, 13. In [192, 193, 194], K. Shimakawa provided, (for G a
finite group) a G-spectrum formulation of part of the (absolute) equivariant
theory discussed in 10.1. It will be nice to have a G-spectrum formulation
of the relative theory discussed in 10.2 as well as a G-spectrum formulation



for the equivariant theory discussed in 11.1 and 12.2 for G profinite and G
compact Lie group. However, P. May informs me that equivariant infinite loop
space theory itself is only well understood for finite groups. He thinks that
profinite groups may be within reach but compact Lie groups are a complete
mystery since no progress has been made towards a recognition principle in
that case. Hence, there is currently no idea about how to go from the type
of equivariant Algebraic K-theory categories defined in this book to a G-
spectrum when G is a compact Lie group.

Appendix A contains some known computations while Appendix B consists
of some open problems.

The need for this book

1) So far, there is no book on higher Algebraic K-theory of orders and
grouprings. The results presented in the book are only available in
scattered form in journals and other scientific literature, and there is a
need for a coordinated presentation of these ideas in book form.

2) Computations of higher K-theory even of commutative rings (e.g. Z)
have been notoriously difficult and up till now the higher K-theory of
Z is yet to be fully understood. Orders and grouprings are usually non-
commutative rings that also involve non-commutative arithmetic and
computations of higher K-theory of such rings are even more difficult,
since methods of etdle cohomology etc. do not work. So it is desirable
to collect together in book form methods that have been known to work
for computations of higher K-theory of such non-commutative rings as
orders and grouprings.

3) This is the first book to expose the characterization of all higher algebra-
ic K-theory as Mackey functors leading to equivariant higher algebraic
K-theory and their relative generalization, also making computations
of higher K-theory of grouprings more accessible. The translation of
the abstract topological constructions into representation theoretic lan-
guage of Mackey functors has simplified the theory some what and it is
desirable to have these techniques in book form.

4) Interestingly, obtaining results on higher K-theory of orders A (and
hence grouprings) for all n > 0 have made these results available for
the first time for some classical K-groups. For instance, it was not
known classically that if R is the ring of integers in a number field
F, and A any R-order in a semi-simple F-algebra, then K3(A),G2(A)
(or even SK (A),SG2(A)) are finite groups. Having these results for
Ko, (A), Gon(A) and hence SKo,(A), SGap(A) for all n > 1 makes these

results available now for n = 1.



5) Also computations of higher K-theory of orders which automatically
yield results on higher K-theory of RG(G finite) also extends to results
on higher K-theory of some infinite groups e.g. computations of higher
K-groups of virtually infinite cyclic groups that are fundamental to the
subject.

Who can use this book?

It is expected that readers would already have some working knowledge of
algebra in a broad sense including category theory and homological algebra,
as well as working knowledge of basic algebraic topology, representation theo-
ry, algebraic number theory, some algebraic geometry and operator algebras.
Nevertheless, we have tried to make the book as self-contained as possible by
defining the most essential ideas.

As such, the book will be useful for graduate students who have complet-
ed at least one year of graduate study, professional mathematicians and re-
searchers of diverse backgrounds who want to learn about this subject as well
as specialists in other aspects of K-theory who want to learn about this ap-
proach to the subject. Topologists will find the book very useful in updating
their knowledge of K-theory of orders and grouprings for possible applica-
tions and representation theorists will find this innovative approach to and
applications of their subject very enlightening and refreshing while number
theorists and arithmetic algebraic geometers who want to know more about
non-commutative arithmetics will find the book very useful.
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Notes on Notations

Notes on Notation

morc(A, B), Home(A, B) := set of C-morphisms from A to B (C a cat-
egory

A = K(A) = Gréthendieck group associated to a semi-group A

VBp(X) = category of finite dimensional vector bundles on X (F = R
or C)

X(G) = set of cyclic quotients of a finite group G

Al[z] = polynomial extension of an additive category A
Alz,2z71], Laurent polynomal extension of A

0,-(G) ={G/H|H € F}, F a family of subgroups of G

Apr,7 = assembly map

He (S, B) :== {G-maps f : S — B}, S a G-set, B a ZG-module
B(S) = set of all set-theoretic maps S — B. Note that

Ha (S, B) is the subgroup of G-invariant elements in B(S)
A(G) = category of homogeneous G-spaces (G a compact Lie group)
(B) := Burnside ring of a based category B

Q(G) := Burnside ring of a group G

| B| := Artin index of a based category B
:= exponent of Q(B)/Q(B)

M7 := n-dimensional mod-m Moore space

H,.(X,E) = E,(X) := homology of a space X with coefficient in a
spectrum F

H"(X,E) = E"(X) := cohomology of a space X with coefficients in a
spectrum E

P(A) := category of finitely generated projective A-modules (A a ring
with identity)
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