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7 Techniques of Integration

= Common integration is only the memory of differentiation. The different devices
by which integration is accomplished are changes, not from the known to the unknown,
but from forms in which memory will not serve us to those in which it will.

Augustus de Morgan

Because of the Fundamental Theorem of Calculus, we can integrate a function if we
know an antiderivative, that is, an indefinite integral. We summarize here the most
important integrals that we have learned so far.

zhtl 1
/m”dm: +C (n#-1) /;d:c:ln|1‘|+C’

n—+1
/ardx: ? +c
Ina

e*dr=e*+C

sin xdx = —cos z + C

sec2xdr = tan z + C

sinh v dz = cosh = + C
tan xdz = In [sec z| + C

/
/
/
[secw tan wdo =sec a+-C
/
/
| wva

1
=i (3
+a2 a a +C

cos rdr =sin x + C

csc?zdr = —cot z+ C

csc z cot zdx = —cscx + C

cosh xdx = sinh z + C

cot xdr =In |sin z| + C

1
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dz = sin™! (f) +C
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7 Techniques of Integration

In this chapter we develop techniques for using these basic integration formulas
to obtain indefinite integrals of more complicated functions. We learned the most
important method of integration, the Substitution Rule, in Section 6.5 (in Volume I).
The other general technique, integration by parts, is presented in Section 7.1. Then we
learn methods that are special to particular classes of functions such as trigonometric
functions and rational functions.

Integration is not as straightforward as differentiation; there are no rules that ab-
solutely guarantee obtaining an indefinite integral of a function. Therefore, in Section
7.6 we discuss a strategy for integration.



It is helpful to use the pattern:

u =[]
du =[]

dv =[]
v=[]

7.1 Integration by Parts 3

7.1 Integration by Parts

Every differentiation rule has a corresponding integration rule. For instance, the Sub-
stitution Rule for integration corresponds to the Chain Rule for differentiation. The
rule that corresponds to the Product Rule for differentiation is called the rule for inte-

gration by parts.
The Product Rule states that if f and g are differentiable functions, then

2 [f(@)g(@)) = £ @)9(a) + f(2)g (@)

In the notation for indefinite integrals this equation becomes

/ F(@)e(@) + f(2)d(z)] dz = f(z)g(z)

or / f(2)g(z) dx + / f(2)g'(z) dz = f(x)g(z)

We can rearrange this latter equation as

() / f(@)' (@) dz = f(z)g(z) - / f'(2)g(z) da

Formula 1 is called the formula for integration by parts. It is perhaps easier to re-
member in the following notation. Let v = f(z) and v = g(z). Then du = f'(z)dz
and dv = ¢(z) dz, so, by the Substitution Rule, the formula for integration by parts
becomes

@) /udvzuv—/ vdu

Example 1 Find /:L‘ sin z dz.

Solution Using Formula 1 Suppose we choose f(z) = z and ¢'(z) = sinz.

Then f'(x) = 1 and g(z) = — cos z. (For g we can choose any antiderivative of ¢’.)
Thus, using Formula 1, we have

/xsinxdm:f(m)g(m)—/ f'(z) g(z) dz
:x(—cosz)—/ (—cosz)dx

= —:vcosz:-f—/ cosz dx
= —zcosz +sinz +C

It is wise to check the answer by differentiating it. If we do so, we get zsinz, as
expected.
Solution Using Formula 2 Let

u=z dv = sinz dx

then du = dx V= —CoSZT



Check the answer by differentiating it.

7 Techniques of Integration

u dv v v du

u
and so /xsinmd:c:/ z sinzdz="x (—cosx)—/ (—cosz) dx

= —rcos:c+/ cosz dx

= —zcosz +sinz + C [ |

Note: Our object in using integration by parts is to obtain a simpler integral than
the one we started with. Thus in Example 1 we started with [ z sin zdz and ex-
pressed it in terms of the simpler integral [ cos z dx. If we had chosen v = sin
and dv = z dz, then du = cos z dr and v = 22 /2, so integration by parts gives

2 1
/rsinxdz:(sinx)%—§/:czcosxd:v

But [ 22 cos z dx is a more difficult integral than the one we started with. In general,
when deciding on a choice for u and dv, we usually try to choose © = f(z) to be a
function that becomes simpler when differentiated (or at least not more complicated)
as long as dv = ¢/(z) dx can be readily integrated to give v.

Example 2 Evaluate / Inzdz.

Solution Here we do not have much choice for u and dv. Let

u=Inzx dv =dz
1

Then du = —dzx v=g
T

Integrating by parts, we get

/lnmda::a;lnx—/ xig-d—
T
:xlnx—/d.r

=zlhzrx—-—z+C

Integration by parts is effective in this example because the derivative of the function
f(z) = In z is simpler than f. |

Example 3 Find /.1'2eI dz.

Solution Let

Then du =2z dx v=¢"

Integration by parts gives

3) /xzex dr = z%e® — Q/J:eJC dr



Figure 1 illustrates Example 4 by
showing the graphs of f(z) = e”sinz
and F(z) = 3e”(sin z — cos z). As
a visual check on our work, notice that
f(z) = 0 when F' has a maximum or

mlnlm(um. N

F
AL
-3 6
( 1)

-4

FIGURE 1

7.1 Integration by Parts 5

The integral that we obtained, [ ze® dz, is simpler than the original integral but is
still not obvious. Therefore, we use integration by parts a second time, this time with
u = z and dv = e* dz. Then du = dz, v = €, and

/xezdrzzer—/exdz
=zxet —e*+C

Putting this in Equation 3, we get

/ z2e® dx = x2e* — 2/ ze® dx

= 2%e® — 2(ze® — e* + C)

= r2e® — 2ze® + 2e* + C where C; = —2C u

Example 4 Evaluate / e’ sin xdz.

Solution Letu = e® and dv = sin zdz. Then du = e* dx and v = — cos x, so
integration by parts gives

(4) / e* sin xdx = —e® cos T +/ e cos zdx

The integral that we have obtained, [ e® cos z dz, is no simpler than the original one,
but at least it is no more difficult. Having had success in the preceding example in-
tegrating by parts twice, we persevere and integrate by parts again. This time we use
u = e* and dv = cos x dx. Then du = e* dz, v = sin x, and

(5) /eI cos rdr = e* sinx—/ e” sin z dx

At first glance, it appears as if we have accomplished nothing because we have
arrived at f e® sin x dx, which is where we started. However, if we put Equation 5
into Equation 4 we get

/el' sin xdx = —e® cos z + ¥ sinx—/ e” sin z dx

This can be regarded as an equation to be solved for the unknown integral. Solving,
we obtain

2/ e® sin xdxr = —€e® cos ¢ + e*sin x

and, dividing by 2 and adding the constant of integration, we get

/ e® sin x dr = Je*(sin z — cos z) + C |

If we combine the formula for integration by parts with Part 2 of the Fundamental
Theorem of Calculus, we can evaluate definite integrals by parts. Evaluating both
sides of Formula 1 between a and b, assuming f’ and ¢’ are continuous, and using the
Fundamental Theorem in the form of Equation 6.4.10, we obtain
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b b
b
) [ 1@ @ = @@l - [ F@o@)ds
1
Example 5 Calculate / tan~! z dz.
0
Solution Let
u=tan 'z dv = dz
Th d dz v=uz
1 = =
en 1+ 22
Since tan™'z > 0 for z > 0, the So Formula 6 gives
integral in Example 5 can be interpreted
as the area of the region shown in 1 1
tan~'zde = z tan~'a], — [ ——dx
Figure 2. ) an rdr = z tan " I|, . 112
! x
7 :1-tan‘11—0~tan‘10—/ ——dx
y=tan'x 0o l+z
1
T z
== — —sd
4 /0 1+22 7
0 A
i x To evaluate this integral we use the substitution ¢ = 1 + z2 (since u has another
meaning in this example). Then dt = 2z dz, so zdx = dt/2. Whenz = 0,t = 1;
whenz =1,t = 2; so
‘ 1 2 2
x dt
/ ——dr=3 — =1 1In |t
FIGURE 2 =3(n2-In1)=31n2

1 1
Therefore /0 tan"lzdx = g —/0 L dr= g = thQ -

Example 6 Prove the reduction formula

; 1 : -1/ .
@) / sin” rdr = ——cosz sin"~ 1z 4+ = / sin" "%z dz
n

where n > 2 is an integer.
Solution Let

u=sin""lz dv = sin zdzx
Then du = (n—1)sin" 2z cos zdz V= —COoS T
so integration by parts gives

/ sin® zdzx = —cos z sin™ ! z 4 (n — 1)/ sin" %z cos? z dz



Exercises 7.1

1-30 = Evaluate the integral.

1.
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ze** dz
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z sin 4z dx
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2 sin 2z dz

8

G
8

)2 dx
rdzx
6 sin 6 cos 6 df

0 sec? 6do

€% sin 30 d6

e % cos 30d6

7.1 Integration by Parts 7

Since cos? z = 1 — sin® z, we have
/ sin” zdx = —cos x sin” 'z + (n — 1) / sin" 2z dr — (n— 1)/ sin™ z dz

As in Example 4, we solve this equation for the desired integral by taking the last term
on the right side to the left side. Thus we have

n/ sin® xdx = —cos z sin" 'z 4 (n — 1)/ sin" 2 zdx
1 -1
or / sin"zdr =—=cos z sin" 'z + 2o /sin"_2 rdz |
n n
The reduction Formula (7) is useful because by using it repeatedly we could eventu-

ally express [ sin™ zdz interms of [ sin z dz (ifnisodd)or [ (sin z)°dz = [ dz
(if n is even).

15. / y sinh y dy

16. / y cosh ay dy

1
17. / te~tdt
0

1/2
21, /
0

22. / z csc? zdz
23. / cos z In (sin z) dz

24. / xse’2 dz

25. / (2z + 3)e” dz

26. / z5% dz

27. / cos (ln z) dz

28. / z tan" !z dz
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29 /4 In /z dz 42. / z"e dr = z"e” —n/:z:"‘leI dz
1

30. / sin (In z) dz 43./(:v2+a2)"d:1:

z(z® +a*)"  2na’ / 2, 2yn-1
- d
il tTong1 )@ o) de

31-34 m First make a substitution and then use integration by parts

1
to evaluate the integral. (n#-3)
n—2 _
31 / sin v/z de 44. / Ll 2/ sec” 2z dx
n—1 n—1
(n#1)

32. / z° cos (z%) dz
45. Use Exercise 41 to ﬁnd/ (In z)3 dz.

4 46. Use Exercise 42 to find / ze® dzx.

1
47-48 m Find the area of the region bounded by the given curves.

ﬁ 35-36 m Evaluate the indefinite integral. Illustrate, and check that 47. y=sin"'z, y=0, z=05
your answer is reasonable, by graphing both the function and its an-
tiderivative (take C' = 0).

35. / T cos T dzr

48. y=5lnz, y=zlnz

ﬁ 49-50 m Use a graph to find approximate z-coordinates of the

points of intersection of the given curves. Then find (approxi-
i / vz ln zde mately) the area of the region bounded by the curves.
37. (a) Use the reduction formula in Example 6 to show that 49. y = 2%, y=ze /2
; in 2
/sinr":cdo::%—sm41+C 50.y=m2—5, y=lnz

51. A particle that moves along a straight line has velocity
v(t) = t?e~" meters per second after ¢ seconds. How far will
it travel during the first ¢ seconds?

(b) Use part (a) and the reduction formula to evaluate
I sin? z dz.

38. (a) Prove the reduction formula

52. If f(0) = g(0) = 0, show that
n 1 n—1 . n—1 n—2
cos™ zdx = — cos z sin x + - cos zdzx
n

/0 " f(2)¢"(z) de = f(a)g'(a)—F'(a)g(a)+ / * f(@)e(z) de

(b) Use part (a) to evaluate f cos® z da.

(¢) Use parts (a) and (b) to evaluate | cos* z dz. 53. Use integration by parts to show that

39. (a) Use the reduction formula in Example 6 to show that / f(z)dz =z f(x) - / zf'(z) dz
" an dz = n—1 " sin" 2 zdz
0 s rar =y o m 54. If f and g are inverse functions and f” is continuous, prove that
where n > 2 is an integer. /b f2)d b (b) (@) /f(b) P
z)dr = —af(a) —
(b) Use part (a) to evaluate fo"/2 sin® z dz and fo"/:’ sin® z dz. . (a) 9(y) dy
() Use part (a) to show that, for odd powers of sin, [Hint: Use Exercise 53 and make the substitution y = f(z).]

/2 2.-4-6-----2n . .
sin?™ ! ¢ dx = 55. Use Exercise 54 to evaluate In zdzx.
/0 e S SN S 3 Ins

56. In the case where f and g are positive functionsand b > a > 0,
draw a diagram to give a geometric interpretation of Exercise

/”/2 i g L2825 @2n—-1)= 54,
v 57. LetI, = [/? sin" zdz.
(a) Show that Ionyo < Iopyi < I
(b) Use Exercise 40 to show that

Iony2  2n+1
Inn ~ 2n+2

40. Prove that, for even powers of sin,

4144 m Use integration by parts to prove the reduction formula.

41. / (In 2)"dz = z(In )" — n/ (In z)"dz




7.1 Integration by Parts

(¢) Use parts (a) and (b) to show that

2n+1<12n+1 <1
21’L+2_ I2n. -

and deduce that lim,— 00 Ion+1/I2, = 1.
(d) Use part (c) and Exercises 39 and 40 to show that
2 2 4 4 6 6 2n 2n T

A 133557 -1 m+1 2

This formula is usually written as an infinite product:
Pl 222806
and is called the Wallis product.

(e) We construct rectangles as follows. Start with a square of
area 1 and attach rectangles of area 1 alternately beside or

on top of the previous rectangle. (See the figure.) Find the
limit of the ratios of width to height of these rectangles.

fov -
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Figure 1 shows the graphs of the
integrand sin® & cos? z in Example 2

and its indefinite integral (with C = 0).

Which is which?
0.2

-0.2
FIGURE 1

7 Techniques of Integration

7.2 Trigonometric Integrals

In this section we use trigonometric identities to integrate certain combinations of
trigonometric functions. We start with powers of sine and cosine.

Example 1 Evaluate / cos® z dz.

Solution  Here the appropriate identity is cos? z = 1 — sin® z. We write

3 2

cosdz = cos?z - cos x = (1 —sin® ) cos =

It is useful to have the extra factor of cosz because if we make the substitution
u = sin x, then we have du = cos z dx. Thus

/cosa:rda::/ cos? x - cos rd:r:/(l—sinz.r)cos rdx

:/(1—u2)du:u—%u3+0

:sina:—%sinaa:—%C |

The method used in Example 1 suggests the following general strategy to be used
in evaluating integrals of the form [ sin™ z cos™ z dx, where m > O and n > 0 are
integers and either m or n is odd.

HOW TO EVALUATE [ sin™ x cos™ z dx

(a) If the power of cosine is odd (n = 2k + 1), save one cosine factor and use
cos? z = 1 — sin’ z to express the remaining factors in terms of sine:

/ sin™ z cos®* !z dx = / sin™ z(cos? z)¥ cos z dz
. om 2 k
= / sin™ z(1 — sin® z)" cos x dx

Then substitute © = sin .

(b) If the power of sine is odd (m = 2k + 1), save one sine factor and use
sin? 2z = 1 — cos? z to express the remaining factors in terms of cosine:

/ sin?**1 z cos™ z dx = / (sin? z)* cos™ z sin z dz
_ 2 \k T ol
= / (1 —cos®z)" cos™ z sin z dx

Then substitute © = cos .

Example 2 Find / sin® z cos? z dz.

Solution  Here the power of sine is odd and so we proceed as in case (b), substituting
U = CoS T:



Example 3 shows that the area of the
region shown in Figure 2 is /2.

1

J

=05

FIGURE 2

7.2 Trigonometric Integrals 1

/ sin® z cos? rdz = / sin? z cos? z sin xdz
= /(1 — cos?x)? cos? z sin zdz
= /(1 —u?)?u?(—du)

:—/(u2—2u4+u6)du

ud ub

5

__1 3 2 _1 7
= —3cos°x + £ cos” T — 5 COS z+C =

The advice in (a) and (b) works if either sine or cosine has an odd exponent. In the
remaining case (both m and n are even), we proceed as follows.

(c¢) Ifthe powers of both sine and cosine are even, use the half-angle identities

2 2

sin®z = (1 — cos 2z) cos® z = (1 + cos 2z)

It is sometimes helpful to use the identity

sin © cos & = % sin 2x

™

Example 3 Evaluate / sin? z dz.
0

Solution  Here m = 2 and n = 0, so we use the half-angle formula for sin? z:

/ sin? zdz = %/ (1 - cos 2z) dz = [3(z — § sin 2z)];
0 0
=3(m—3sin2r)— 30— sin0) = ir

Notice that we mentally made the substitution v = 2z when integrating cos 2z. An-
other method for evaluating this integral was given in Exercise 37 in Section 7.1. W

Example 4 Find / sin® z dz.

Solution It is possible to evaluate this integral using the reduction formula for
J sin™ z dz (Equation 7.1.7) together with Example 1 (as in Exercise 37 in Section
7.1), but another method is to write sin* z = (sin® z)? and use (c):

/sin4 w dy = /(sin2 z)? dzx
1 2
_ / ( c205 2:v> dr

i/(l — 2 cos 2z + cos? 2z) dz
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Since cos® 2z occurs, we must use another half-angle formula
cos® 2z = 3(1 4 cos4x)

This gives
/ sin* rdz = %/[1 — 2cos 2z + (1 + cosdz)| dx

- %/(—% —2cos 2z + 3 cos4x) dz

=% (32 —sin2z + gsindx) + C u

Integrals of the form [ tan™ x sec™ x dz can be integrated in the following cases.

HOW TO EVALUATE [ tan™ x sec™ x dx

(a) If the power of secant is even (n = 2k), save a factor of sec? r and use
sec? z = 1 + tan? z to express the remaining factors in terms of tan z:

/ tan™ z sec?* x dx = / tan™ z(sec? z)* 1 sec? z dx
= / tan™ z(1 + tan® z)* ! sec? z dx

Then substitute © = tan x.

(b) If the power of tangent is odd (m = 2k + 1), save a factor of sec z tan = and
use tan? r = sec? z — 1 to express the remaining factors in terms of sec z:

/ tan?**1 ¢ sec” z dz = / (tan? z)* sec” ! zsec z tan z dx
o 2, k n—1
= | (sec®x —1)"sec" 'z sec z tan xdx

Then substitute . = sec z.

Example 5 Evaluate / tan® z sec? z dz.

Solution  Since the secant has an even exponent, we factor sec? z from the inte-
grand and substitute © = tan z so that du = sec? z dz. The rest of the integrand is
then expressed completely in terms of tan x by means of the identity

sec?z = 1+ tan? z:

/ tan® zsect x dx = / tan® z sec? xsec? z dx
= / tan® (1 + tan? z) sec? z dx

:/ u6(1+u2)du:/(u6+u8)du

o
—7-’-3%—0

_ 1 7, 1 9
=ztan'z + gtan"z +C m



