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Preface

I wrote this book because I have a deep conviction that mathematics is about ideas,
not just formulas and algorithms, and not just theorems and proofs. The text covers
the material usually found in a one or two semester linear algebra class. It is written,
however, from the point of view that knowing why is just as important as knowing
how.

To ensure that the readers see not only why a given fact is true, but also why it is
important, I have included a number of the beautiful applications of linear algebra.

Most of my students seem to like this emphasis. For many, mathematics has always
been a body of facts to be blindly accepted and used. The notion that they personally
can decide mathematical truth or falsehood comes as a revelation. Promoting this
level of understanding is the goal of this text.

R. C. PENNEY

West Lafayette, Indiana
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Features of the Text

Parallel Structure Most linear algebra texts begin with a long, basically com-
putational, unit devoted to solving systems of equations and to matrix algebra and
determinants. Students find this fairly easy and even somewhat familiar. But, after
a third or more of the class has gone by peacefully, the boom falls. Suddenly, the
students are asked to absorb abstract concept after abstract concept, one following
on the heels of the other. They see little relationship between these concepts and the
first part of the course or, for that matter, anything else they have ever studied. By
the time the abstractions can be related to the first part of the course, many students
are so lost that they neither see nor appreciate the connection.

This text is different. We have adopted a parallel mode of development in which
the abstract concepts are introduced right from the beginning, along with the compu-
tational. Each abstraction is used to shed light on the computations. In this way, the
students see the abstract part of the text as a natural outgrowth of the computational
part. This is not the “mention it early but use it late” approach adopted by some texts.
Once a concept such as linear independence or spanning is introduced, it becomes
part of the vocabulary to be used frequently and repeatedly throughout the rest of the
text.

The advantages of this kind of approach are immense. The parallel development
allows us to introduce the abstractions at a slower pace, giving students a whole
semester to absorb what was formerly compressed into two-thirds of a semester.
Students have time to fully absorb each new concept before taking on another. Since
the concepts are utilized as they are introduced, the students see why each concept is
necessary. The relation between theory and application is clear and immediate.

Gradual Development of Vector Spaces One special feature of this text is its
treatment of the concept of vector space. Most modern texts tend to introduce this
concept fairly late. We introduce it early because we need it early. Initially, however,
we donotdevelopitinany depth. Rather, we slowly expand the reader’s understanding
by introducing new ideas as they are needed.

This approach has worked extremely well for us. When we used more traditional
texts, we found ourselves spending endless amounts of time trying to explain what a
vector space is. Students felt bewildered and confused, not seeing any point to what
they were learning. With the gradual approach, on the other hand, the question of
what a vector space is hardly arises. With this approach, the vector space concept
seems to cause little difficulty for the students.

Treatment of Proofs It is essential that students learn to read and produce proofs.
Proofs serve both to validate the results and to explain why they are true. For many
students, however, linear algebra is their first proof-based course. They come to the
subject with neither the ability to read proofs nor an appreciation for their importance.

Many introductory linear algebra texts adopt a formal “definition-theorem-proof™
format. In such a treatment, a student who has not yet developed the ability to read
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abstract mathematics can perceive both the statements of the theorems and their proofs
(not to mention the definitions) as meaningless abstractions. They wind up reading
only the examples in the hope of finding “patterns” that they can imitate to complete
the assignments. In the end, such students wind up only mastering the computational
techniques, since this is the only part of the course that has any meaning for them. In
essence, we have taught them to be nothing more than slow, inaccurate computers.

Our point of view is different. This text is meant to be read by the student - all of it!
We always work from the concrete to the abstract, never the opposite. We also make
full use of geometric reasoning, where appropriate. We try to explain “analytically,
algebraically, and geometrically.” We use carefully chosen examples to motivate both
the definitions and theorems. Often, the essence of the proof is already contained in
the example. Despite this, we give complete and rigorous student readable proofs of
most results.

Conceptual Exercises Most texts at this level have exercises of two types: proofs and
computations. We certainly do have a number of proofs and we definitely have lots of
computations. The vast majority of the exercises are, however, “conceptual, but not
theoretical.” That is, each exercise asks an explicit, concrete question which requires
the student to think conceptually in order to provide an answer. Such questions are
both more concrete and more manageable than proofs and thus are much better at
demonstrating the concepts. They do not require that the student already have facility
with abstractions. Rather, they act as a bridge between the abstract proofs and the
explicit computations.

Applications Sections Doable as Self-Study Applications can add depth and mean-
ing to the study of linear algebra. Unfortunately, just covering the “essential” topics
in the typical first course in linear algebra leaves little time for additional material,
such as applications.

Most of our sections are followed by one or more application sections that use
the material just studied. This material is designed to be read unaided by the student
and thus may be assigned as outside reading. As an aid to this, we have provided
two levels of exercises: self-study questions and exercises. The self-study questions
are designed to beanswerable with a minimal investment of time by anyone who has
carefully read and digested the relevant material. The exercises require more thought
and a greater depth of understanding. They would typically be used in parallel with
classroom discussions.

We feel that, in general, there is great value in providing material that the students
are responsible for learning on their own. Learning to read mathematics is the first
step in learning to do mathematics. Furthermore, there is no way that we can ever
teach everything the students need to know; we cannot even predict what they need
to know. Ultimately, the most valuable skill we teach is the ability to teach oneself.
The applications form a perfect vehicle for this in that an imperfect mastery of any
given application will not impede the student’s understanding of linear algebra.
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Early Orthogonality Option We have designed the text so that the chapter on
orthogonality, with the exception of the last three sections, may be done immediately
following Chapter 3 rather than after the section on eigenvalues.

True-False Questions We have included true-false questions for most sections.

Chapter Summaries At the end of each chapter there is a chapter summary that
brings together major points from the chapter so students can get an overview of what
they just learned.

Student Tested This text has been used over a period of years by numerous instructors
at both Purdue and other universities nationwide. We have incorporated comments
from instructors, reviewers, and (most important) students.

Technology Most sections of the text include a selection of computer exercises
under the heading Computer Projects. Each exercise is specific to its section and is
designed to support and extend the concepts discussed in that section.

These exercises have a special feature: They are designed to be “freestanding.”
In principle, the instructor should not need to spend any class time at all discussing
computing. Everything most students need to know is right there. In the text, the
discussion is based on MATLAB. However, translations of the exercises into Maple
are contained in the Student Resource Manual. They are also available free on the
World Wide Web at http://www.math.purdue.edu/ " rcp/LAText.

Meets LACSG Recommendations The Linear Algebra Curriculum Study Group
(LACSG) recommended that the first class in linear algebra be a “student-oriented”
class that considers the “client disciplines” and that makes use of technology. The
above comments make it clear that this text meets these recommendations. The
LACSG also recommended that the first class be “matrix-oriented.” We emphasize
matrices throughout.

Acknowledgments

The author would like to thank all of students, teachers, and reviewers of the text who
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Systems of Linear
Equations

1.1 THE VECTOR SPACE OF m X n MATRICES

Itis difficult to go through life without seeing matrices. For example, the 2008 annual
report of Acme Squidget might contain the table 1.1, which shows how much profit
(in millions of dollars) each branch made from the sale of each of the company’s three

varieties of squidgets in 2008.

Table 1.1 Profits: 2008

Red Blue Green Total
Kokomo 11.4 5.7 6.3 234
Phili 91 6.7 5.5 21.3
Oakland 14.3 6.2 5.0 255
Atlanta 10.0 7.1 57 22.8
Total 44.8 25.7 22.5 93.0

If we were to enter this data into a computer, we might enter it as a rectangular
array without labels. Such an array is called a matrix. The Acme profits for 2008
would be described by the following matrix. This matrix is a 5 x 4 matrix (read “five
by four”) in that it has five rows and four columns. We would also say that its “size” is
5 x 4. In general, a matrix is said to have size m x n if it has m rows and n columns.

1



2 SYSTEMS OF LINEAR EQUATIONS

114 57 6.3 234

9.1 6.7 55 213

P= 14. 6.2 5.0 25.5
10.0 7.1 5.7 228

44.8 25.7 225 93.0

Definition 1. The set of all m x n matrices is denoted M (m,n).

Each row of an m x n matrix may be thought of as a 1 x n matrix. The rows are
numbered from top to bottom. Thus, the second row of the Acme profit matrix is the

1 x 4 matrix
[9.1,6.7,5.5,21.3]

This matrix would be called the “profit vector” for the Phili branch. (In general, any
matrix with only one row is called a row vector. For the sake of legibility, we usually
separate the entries in row vectors by commas, as above.)

Similarly, a matrix with only one column is called a column vector. The columns
are numbered from left to right. Thus, the third column of the Acme profit matrix is

the column vector )
6.3

N croen
IO Ut

2

This matrix is the “green squidget profit vector.”
If A, As, ..., A, isasequence of m x 1 column vectors, then the m X n matrix
A that has the A; as columns is denoted

A=[A,As, ... A

Similarly, if By, Ba, ..., B, is a sequence of 1 x n row vectors, then the m x n
matrix B that has the B; as rows is denoted
By
Bs
B = .
B,,

In general, if a matrix is denoted by an uppercase letter, such as A, then the
entry in the ith row and jth column may be denoted by either A;j or a;;, using the
corresponding lowercase letter. We shall refer to a;; as the “(i, j) entry of A For
example, for the matrix P above, the (2, 3) entry is po3 = 5.5. Note that the row
number comes first. Thus, the most general 2 x 3 matrix is

e [ ann aiz a3 ]
a1 a2 Q23
We will also occasionally write “A = [a;;],” meaning that “A is the matrix whose
(4,7) entry is a;;.”
At times, we want to take data from two tables, manipulate it in some manner, and
display itin a third table. For example, suppose that we want to study the performance



