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Preface

Nonlinear optics came into being at the same time as the laser, about a
quarter of a century ago. Since then it has become a well-developed subject
of physics with many and varied applications, for it plays a definitive role in
many phenomena which result when laser radiation interacts with matter.

There are many monographs devoted directly or indirectly to nonlinear
optics and many of these are cited in the introduction to this book. But
until now there has been no simple and consistent account of the basics of
nonlinear optics that contains a description of all the interrelated phenom-
ena, from the microscopic to the macroscopic. This, then, is the reason for
this book. In it, using a simple model of a time-independent interaction of
monochromatic light with an atomic gas, we describe the elementary
nonlinear processes that emerge for an isolated atom, the optical character-
istics of the medium averaged over a large number of atoms and depending
on the intensity of the light, and the basic nonlinear optics phenomena
observed in the propagation of an intense light wave through the medium.

We have focused on an analytical-theoretical description of nonlinear
optics phenomena and we have illustrated conclusions with experimental
results. Such an approach reflects the essence science, which is a theoretical
interpretation of experimental facts and which subsequently allows one to
predict unknown properties of matter. Our objective is not to describe all
known nonlinear optics phenomena even within the scope of this simple
model. We have, however, tried to single out the main phenomena that
qualitatively distinguish nonlinear optics from the common linear optics of
weak light fluxes. Although the simple model considered here ignores many
aspects of nonlinear optics, the basics are presented quite fully.

In referring to the scientific literature on the subject we have given
preference to monographs over reviews and reviews over original work with
a view to making it easier for the reader to familiarize himself with
additional material.

We have endeavored to present the material in such a way so that it is
accessible to a wide range of physicists and engineers as well as to
senior /graduate college students. We have assumed that the reader is
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vi PREFACE

familiar with the basics of atomic physics, quantum mechanics, the quan-
tum theory of radiation, and the physics of lasers. Readers who require
additional information on these subjects should turn to the Course of
Theoretical Physics by L. D. Landau and E. M. Lifshitz (Volume 2, The
Classical Theory of Fields, 1975, and Volume 3, Quantum Mechanics:
Nonrelativistic Theory, 1977), to Atomic Spectra and Radiative Transitions
by L. I. Sobelman, and to Principles of Lasers by O. Zvelto.

The authors are grateful to V. A. Kovarskii for reviewing the manuscript
and making many valuable suggestions.

NIKOLAI B. DELONE
VLADIMIR P. KrRAINOV

Moscow
May 1986
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dipole susceptibility
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Introduction

Optics is the branch of physics that studies light,—that is, the electromag-
netic field in the visible range of frequencies—and its interaction with
matter. The term optics was defined long ago and is fairly unambiguous.
The term nonlinear optics is more ambiguous. This is quite in the nature of
things, since nonlinear optics, as an independent chapter of optics, ap-
peared rather more recently. The birth of nonlinear optics, as is well known
occurred at the same time as that of the laser, in the early 1960s. Now by
nonlinear optics one usually means that department of optics that studies
the interaction of matter with light of high intensity, which changes the
optical -properties of-the matter itself. If, as is customary in optics, we
describe the properties of matter by the optical characteristics averaged
over a large number of atoms (that is, by the polarization, dielectric
constant, and index of refraction), then for light of high intensity all these
characteristics become dependent on the electric field strength E in the light
wave. For instance, the polarization vector P must generally be represented
in the form of a series in which the terms are proportional to different
powers of the electric field strength:

P=P(1)+P(2)+P(3)+...’

with PO a E, P® a E%, P® o E?, etc., in the absence of resonances.
Here, as everywhere in what follows, we have assumed the use of the atomic
system of units (A= e = M,=1), in terms of which the electric field
strength E is always small compared to unity in the real situations we are
interested in. Media for which such series expansions are valid and require
terms beyond the first are called nonlinear. Allowing for the higher-order
terms in the expansion of the polarization in powers of the electric field
strength is equivalent to allowing for nonlinear scattering and multiphoton
light absorption by the medium. For low-intensity light, that is, low electric
field strength in the light field, we can ignore the higher-order terms in the
expansions in comparison with the first term, which corresponds to the
initial principles of ordinary optics. In accordance with this it is logical to
call normal optics /inear. This term, however, has not yet acquired wide
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2 INTRODUCTION

application, although it well reflects the essence of the situation. We will be
using it.

What is important is that, from the standpoint of the macroscopic
phenomena that emerge in the interaction of light with matter, the dif-
ference between linear and nonlinear optics is qualitative. For instance, in
nonlinear optics the basic laws of the common linear optics, such as the law
of linear superposition of light fluxes and the law of rectilinear propagation
of light, cease to be valid, and light of frequency w can excite light of
frequencies 2w, 3w, etc.

Since nonlinear optics is based on the phenomena associated with the
change in the properties of matter under the action of light, it is obvious
that a consistent exposition of nonlinear optics cannot be confined to a
discussion of macroscopic phenomena; a microscopic discussion of the
phenomena at the atomic level is also necessary. A complete and consistent
exposition of nonlinear optics requires considering the elementary nonlin-
ear effects that emerge at the atomic level and lead to the dependence of the
averaged optical characteristics of matter on the intensity of light; it further
requires a description of the macroscopic phenomena that appear during
the propagation of a light wave in a medium, by solving the Maxwell
equations and allowing for the nonlinear nature of the medium. This book
is devoted to just such a thorough and consistent exposition of the basics of
nonlinear optics.

One must bear in mind that the microscopic description of the interac-
tion of light with matter was traditionally employed within the scope of the
common, linear optics in such fields as molecular optics (see Born and
Wolf, 1975; Fabelinskii, 1968; and Vol’kenstein, 1951). Lately several
monographs have been published devoted to a microscopic description of
the nonlinear-optics phenomena that emerge at the atomic level (see Delone
and Krainov, 1985; Kovarskii, 1974; and Rapoport, Zon, and Manakov,
1978). However, in classical monographs devoted to nonlinear optics—for
instance, Akhmanov and Khokhlov, 1964, and Bloembergen, 1965—the
focus is on the macroscopic approach and solution of the Maxwell
equations for nonlinear media. Other monographs can also be cited
(Apanasevich, 1977; Butylkin, Kaplan, Khronopulo, and Yakubovich, 1984;
Hanna, Yuratich, and Cotter, 1979; Kielich, 1981; and Schubert and
Wilhelmi, 1971) that to one degree or another consider the whole range of
questions from the microscopic to the macroscopic. But the tendency of the
authors of these books to describe in great detail the greatest possible
number of nonlinear-optics phenomena in diverse media makes it difficult
to determine the main laws of nonlinear optics.

In this book we have tried something different. We have simplified the
exposition as much as possible and used a unifed language and the same
approximations.



INTRODUCTION 3

The general approach to describing the interaction is to use the common
semiclassical approximation, namely, the atom is described by using quan-
tum mechanics, while the electromagnetic field is described in terms of
classical field theory. The quantum term “photon” is used only to describe
the graphic transition schemes qualitatively and to clarify the meaning of
energy conservation in a variable field. The classical terms “intensity of
light” and “field strength in the light wave” are used equivalently, depend-
ing on the specific problem. For well-known reasons the interaction of light
with an atom is described in the dipole approximation. As for the atomic
transitions initiated by the light field, we assume that only one optical
electron participates in such transitions.

Depending on the phenomenon, in describing the interaction of light
with matter, we will be using both the language of wave optics, based on the
Maxwell equations, and the language of geometrical optics, which is the
classical limit of wave optics and is applicable when the dimensions of
the sample are large compared with the wavelength of the light.

For the sake of simplicity we restrict our discussions to the simplest
possible model of the interaction; within the scope of this model the light is
assumed to be ideally monochromatic and the medium is a gas consisting of
1solated atoms. It should be noted that this model is fully realistic though
seemingly simple. Indeed, although laser radiation is actually quasimono-
chromatic, its degree of monochromaticity is very high (up to Aw/w ~
10~8). Furthermore, over a broad range of pressures, a gas can be
considered as a medium consisting of isolated atoms. Finally, if we remain
strictly within the optical frequency range, the differences between atomic
and molecular gases are insignificant because of the small differences in the
electronic spectra of atoms and molecules. Of course, in using such a model,
the nonlinear-optics phenomena that occur in condensed transparent media
(liquids, crystals, and glasses) are excluded in principle. However,
notwithstarding the marked differences in the structure of condensed media
(the presence of free electrons, the crystal lattice, anisotropy, etc.) and
rarefied atomic gases, the main features of nonlinear-optics phenomena are
qualitatively the same in all media. The differences are only quantitative.

Another aspect of our approach is that we deal only with steady-state
processes. Processes are called steady-state when light acts on a substance
for a much longer period than the characteristic relaxation times of the
substance. When this time interval is shorter than the relaxation time, we
will speak of non-steady-state (or transient) interaction. Quite naturally,
such transient nonlinear-optics effects as self-induced transparency, light
echo, and optical nutation (e.g. see Apanasevich, 1977) remain outside the
scope of this discussion. All these effects differ qualitatively from steady-state
effects. It must be noted, however, that the physical essence of these effects
is related not to the nonlinearity of the medium but to the ultrashort



