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PREFACE

College Algebra was designed to accomplish the development of skills necessary in
mathematics, and to facilitate the application of those skills to the sciences and
other fields. In achieving these goals, we have written a text that differs in a
number of ways from college algebra books currently available.

1. We include a number of new, interesting and challenging exercises. While we
provide problems like

azb‘l)3

Simplify: ( ~3
¢

to give the student a chance to develop confidence, we also include problems like
the following:

3/2 _ p2.-1/2
Simplify: s_%

(02 _ x2)1/2 —(a2 + x2)(a2 _ xz)*l/Z

a’ — x?

Simplify:

We include a large number of verbal problems. In some sections, the set of
verbal problems is divided into two groups according to level of challenge.

This book is structured so that the student works exercises designed to move
him or her from the level of intermediate algebra to a level somewhat beyond the
average college algebra text. This added competence should enable the student to
more readily use algebra skills in other courses or in job situations.
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Preface

The following exercise sets contain some exercises usually not found in a
college algebra text but very common in later mathematics or science courses.

Exercise Set Exercises
14 49-71
25 89-96
31 44-48
32 67-84
33 13-24
33 39-44
4.1 43-50
(and so on)

2. We have assumed that a student using this text has had some experience with
algebra. Here are some consequences of this assumption:

a. The first section deals with the distributive law. The distributive law is the
basis for the techniques used to expand and factor polynomials, simplify frac-
tions, and solve equations. It is also the source of many of the difficulties students
have with algebra. In order to address this problem we identify the distributive
law as providing a unifying theme for the first two chapters and immediately
present the student with significant algebraic problems. We feel that this ap-
proach will motivate the student more effectively than would the standard light
review of the structure of the real number system, sets, order relations, and so on.

b. Definitions and concepts are not introduced until they serve a purpose.
Concepts (such as the associative law) that generally do not cause difficulties for
the student are simply assumed without comment. No attempt is made to review
all of intermediate algebra.

3. In this book the exposition is based on examples. Our experience has
convinced us that students are more likely to study examples than to read pages
of prose. Many of the definitions and techniques are woven into the examples.
Naturally not every concept is expressed or developed by example. Explanations
before or after examples are also used.

We have tried to limit the number of definitions and terms. The algebra student
is too often overwhelmed by detail and terminology-much of it unnecessary.
Reducing the number of terms also unifies the subject. This should help the
student maintain a sense of direction.

4. The topics in this book are not presented as a sequence of isolated tricks. A
technique is presented and then used again and again. This spiral arrangement is
developed as much as possible. It should help the student learn algebra as a
unified subject rather than as a bag of tricks.

5. Some important applied mathematics techniques are covered in this text.
These techniques include optimization of quadratic functions (Section 6.3) and
fitting straight lines to data (Section 6.2).

The book is arranged so as to provide the instructor with considerable
flexibility. Exercises and examples that are designed mainly for calculus or science



Preface X

bound students are designated by the labels “Preparing for calculus” or *“Prepar-
ing for science”. Students not planning to continue in mathematics or science can
skip those topics and exercises without being handicapped later in the text.

The instructor with a lot of time may be able to cover most or all of the text in
a semester. At the other extreme, an instructor could omit Chapters 1-3, Sections
45, 4.6, 5.5, 6.2, 6.4, 7.3, 8.4, 9.5, 9.6, 9.7, and Chapter 11. This could be done
without serious loss of continuity. Most classes will be served best by a selection
of topics between these two extremes.

Finally we want to thank those who reviewed various manuscripts of this book:
James E. Arnold, Jr., University of Wisconsin; Louis Chatterly, Brigham Young
University; Ferdinand Haring, North Dakota State University; L. Kim Jones,
Southern Utah State College; Herbert E. Kasube, Bradley University; James W.
Maxwell, Oklahoma State University; Thomas L. Shiflett, Southwest Missouri
State University; John Spellman, Southwest Texas State University; H. Keith
Stumpff, Central Missouri State University; Claudia Taylor, Brevard Community
College; Warren W. Watson, Louisiana Tech. University; Clifton Whyburn,
University of Houston.

We also want to thank Mathematics Editor Craig Barth and the staff at
Brooks,/Cole for their patience and assistance. We extend a special thanks to
Consulting Editor Bob Wisner and Production Editor Jane Stanley.

William Bosch
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REVIEW OF
SOME TOPICS
OF ALGEBRA

1.1

Distributive Law

THE DISTRIBUTIVE LAW

If you are asked to multiply 106 by 5, you probably give the answer 530
immediately. And if you are asked to multiply 95 by 5, you quickly give 475 as
the answer. If you diagram the thinking process you use to work these problems,
it may look something like this:
5-106 = 500 + 30 = 530
5-95 =500 — 25 = 475
If we insert additional steps, the diagrams become
5-106 =5(100 + 6) =5 -100 + 5 - 6 = 500 + 30 = 530
5-95=5(100 —5)=5-100 —5 -5 =500 — 25 = 475
These problems and diagrams illustrate the use of a fundamental rule of
arithmetic and algebra known as the distributive law. Using symbols to write the
abstract forms of this law, we obtain
a(b+c)=ab + ac
a(b—c)=ab—ac
or
(b+c)la=ba+c
(b—c)a=ba — ca
It is helpful to remember that ab = ba (commutative law) and that subtraction

is the addition of the negative of a number. This knowledge allows us to condense
the four rules above into just one:

a(b+c¢)=ab + ac
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Expanding,
Factoring,
Factors,
Terms

Example 1

Example 2

Example 3

This rule is known as the distributive law because it shows that multiplication
distributes over addition and subtraction. Notice that multiplication does not
distribute over multiplication:

44(2) = 44(2 - 1) # 88 - 44

Keeping numerical examples in mind will help you remember how to use the
distributive law correctly in abstract settings.

When we use the distributive law to equate the expression a(b + ¢) to ab + ac,
we are multiplying or expanding. When we do the reverse, we are factoring.

The distributive law can be verbalized by introducing the concepts of factors
and terms. Here is an informal but adequate definition of these words. Factors
make up a product or quotient; terms make up a sum or difference. For example, the
expression

2x(x +y)

is a single term since it is made up of the factors 2, x, and (x + y). These factors
are connected by multiplication. The factor (x + y) consists of the two terms x
and y connected by addition. In

2x + y(x +y)

there are two terms, 2x and y(x + y), connected by addition. The term 2x
consists of the factors 2 and x, and the term y(x + y) consists of the factors y and
(x + y). The factor (x + y) of the term y(x + y) itself consists of the two terms x
and y.

The distributive law can now be verbalized as follows: When multiplying a sum
or difference of terms by an expression, multiply every term in the sum or difference
by that expression.

Multiply @ — x + y by 2.

Solution Aa—x+y)=2a— 2x+ 2y =

Multiply 2(x + y) by 3.
Solution 3[2(x +y)] =6(x +y)
or

3[2(x + y)] = 2(3x + 3y)

The first form of the answer is preferable. =

Factor ax + ay.

Solution
Using the distributive law in reverse, we have

o+ @ = a(x+y) EE
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Example 4 Factor 2ax — 4ay.
Solution 2ax — 4ay = 2a(x — 2y) E
We also want to point out that the distributive law can be used in stages. For
example,
(443)(23) = (44 +3)(2 + 3)
=(44+1)2+(44+1)%
=44-2+%3-2+44-3+13-3
=88 +1+22+3
= 1114
This formulation of the distributive law can be expressed literally as
(a+b)(c+d)=ac+ ad + bc + bd
You should not make an effort to memorize this formula but simply prepare
Factoring yourself to use the distributive law repeatedly. Repeated use of the distributive

by Grouping law is the basis for factoring by grouping. Example 5 illustrates this process.

Factor ax + bx + 2a + 2b.
ax + bx +2a+2b=x(a+ b)+2(a+b)
=(x+2)(a+b)

Example 5
Solution

EXERCISE SET 1.1

I
Apply the distributive law to compute the following without using paper, pencil, or calculator.
1. 6 - 410 2. 6-39 3.2-675
4. (—6)-410 5. (=2)(—675) 6. 5(1.25)
7. 99 - 99 (Hint: 99 =100 — 1) 8. 59-59 9. (1.1)2.1)
10. 99 - 101 11. 29-31 12. 49 - 51
13. (52)(2.75) 14. 4 - 43 15. 12 - 203
16. 1% - 223
11
Expand using the distributive law.
17. 62 + 1) 18. 3(a + b) 19. 4(x + y)
20. 2(x — y) 21. 2(x— 1) 22. 42x + )
23. 72x + 3) 24. a(bc + d) 25. (—=2)(—6x+1)
26. a[2 + b(x + 1)] 27. 3(x+y—1 28. 4x+y+w-—2)
29. 2(u—z—w) 30. (x —y)x+y) 3. (x +y)(x +y)
32. (x —y)x—y) 3. (x+1)(x—-2) 34. (x—1)(x—2)
35. (x + a)(x + b) 36. (x — 2a)(x + 2a) 37. 2x — y)(x—2y)
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38.
41.
. 4—2e
47.
. ax + aby — az
53.
. ab + ac —2b— 2c¢
59.

111

Factor by using the distributive law and grouping.

3x + 3y
3x + 6u

4 —8x — 16y

ab + bx + ay + xy

P—1

39. 3x + wx 40. 2w — 2

42. 3x + 6 43. 1y — ¢

45. 18 + 9¢ 46. 2u + 4x + 6y

48. 2 — 6w — 10u 49. 6 — 3x — 3y

51. 2a — 2ax + 2ay 52. ax + ay + bx + by

54. a’ + ab + ac + be 55. 2r —ye —2c¢ +yr
57. ax + bx — ay — by 58. xr+xs+yr+ys+r+s

60. x — x%a

1.2

Special Products

EXPANDING AND FACTORING

In this section we increase our ability to expand and factor algebraic expressions.
Although expanding an expression can be accomplished by applying the distribu-
tive law again and again, a knowledge of special products makes the expansion of
many products faster and more enjoyable and is also very important in factoring,
We must always remember that factoring is just the reverse of expanding; thus,
everything we learn about the one process will reinforce our ability to perform the
other.

We now list some special products you should verify (see Exercise 1.2) and
commit to memory. We include the distributive law in this list because it too is a
method for expanding a product and is of such basic importance.

Special Products and Expanding
a(b+ ¢)=ab + ac

(a + b)a—b)=a?-b?

(a+ b)>=a%+ 2ab + b2

(a—b)>=a?—2ab + b?
(a+b)=a®+ 3ab + 3ab? + b°
(a — b)® =a’® - 3a%b + 3ab? — b*
(a + b)a*—ab + b*) = a3 + b?
(a—b)a*+ab+b>)=a°>-b

® N s W e

Note that each of the eight identities just given consists of an indicated product
on the left side and the product or expansion on the right side. These rules are
properly called identities because they are valid for all values of @ and b. Be
careful not to confuse Identities 2 and 4, or 5 and 7, or 6 and 8. What are the
differences? It will help if you put these rules into words. For example, Identity 5
gives us the “cube of a sum” whereas the use of Identity 7 results in the “sum of
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Expanding

Example 1

Example 2

Example 3

Special Products

two cubes.” This list does not exhaust the possibilities for special products;
however, it will be sufficient for the problems we will encounter.

The distributive law, Identity 1, was found in a variety of forms in Section 1.1.
Identities 2—8 can also be found in a variety of forms. Keep this in mind as you
examine the following examples.

Expand (2x — y)2.
Solution
We use Identity 4 to write
(2x = )" = (2x)" = 2(2x) y + y?
= 4x? — 4xy + y? [ |
Expand (x — 2y)(x + 2y).
Solution
Here we use Identity 2 to write
(x = 2p)(x + 2y) = x> = (2y)’
S - 4y2 ]
Expand (a — 3)(a? + 3a + 9).
Solution
Identity 8 applies, so we write
(a—3)a*>+3a+9)=a>-3
=a’—27 =

We now list again the eight identities above. However, we interchange the left
and right sides because that is how they are used in the process of factoring. We
also wish once again to emphasize that factoring is the reverse of multiplying or
expanding. Thus, we can always check a factoring procedure by expanding the
result and then comparing it to the original expression.

Special Products and Factoring

1. ab + ac=a(b + ¢)

2. a’> — b*=(a+ b)a—b)

3. a’>+ 2ab + b* = (a + b)?

4. a® — 2ab + b* = (a — b)?

5. a’ + 3a®b + 3ab® + b* = (a + b)?
6. a® — 3a%b + 3ab* — b’ = (a — b)3
7. a®>+ b*=(a+ b)a® - ab + b?)
8. a®>— b =(a— b)a®+ ab + b?)
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Prime Factors

Factoring

Example 4

Example 5

Example 6

Note that the right side of these identities appears as an indicated product; that
is, the right side is the factored version of the left side. Again you should be
careful not to confuse Identities 5" and 7’, and so on. The processes indicated by
Identities 1'-4', 7', and 8’ traditionally have been called “factoring out a common
monomial,” “factoring the difference of two squares,” “factoring a perfect square
trinomial,” “factoring a perfect square trinomial,” “factoring the sum of two
cubes,” and “factoring the difference of two cubes,” respectively.

You may be wondering what the final answer is to a factoring problem.
Answering that question is more difficult than one might suppose. Technically, an
expression is completely factored if it is written as a product of prime factors. The
question then becomes “What is a prime factor?” A factor is prime if it cannot
itself be factored (except in some trivial way), which depends in turn on the field
or set of numbers over which the operations are performed. This explanation may
seem somewhat involved, but the examples below will clarify.

In this book we will factor over the field of rational numbers or over the ring of
integers. In plain words, we will use fractions to factor an expression if the
expression has fractions as coefficients. If the expression has only integer coeffi-
cients, we will restrict ourselves to integer coefficients in the factors. We will also
deviate from this rule when it suits our purpose. These points will become clear as
you study the examples and work the exercises in this and later sections.

Whenever we begin a factoring process, we should first factor out monomials.
This factoring never complicates later steps and often simplifies them.

Factor xy — xw.

Solution xy—xw=x(y—w) |

Factor x?y? — x2w?2.

Solution
First factor out x? to obtain
x4 — x2w? = x2(y2 — w?)
Then note that y> — w? is a difference of two squares and factor accordingly.
x2y2 _ x2w2 = x2(y2 _ w2)

=x*(y—w)(y +w) -
Factor (y — w).

Solution

y —w is prime. We could write (y —w)=1-(y —w) or (y —w)=
2+ 3 - (y — w), but these are trivial factorizations.



