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Foreword

Algebra and topology, the two fundamental domains of mathematics, play complemen-
tary roles. Topology studies continuity and convergence and provides a general framework
to study the concept of a limit. Much of topology is devoted to handling infinite sets and
infinity itself; the methods developed are qualitative and, in a certain sense, irrational. Al-
gebra studies all kinds of operations and provides a basis for algorithms and calculations.
Very often, the methods here are finitistic in nature.

Because of this difference in nature, algebra and topology have a strong tendency to
develop independently, not in direct contact with each other. However, in applications,
in higher level domains of mathematics, such as functional analysis, dynamical systems,
representation theory, and others, topology and algebra come in contact most naturally.
Many of the most important objects of mathematics represent a blend of algebraic and of
topological structures. Topological function spaces and linear topological spaces in general,
topological groups and topological fields, transformation groups, topological lattices are
objects of this kind. Very often an algebraic structure and a topology come naturally
together; this is the case when they are both determined by the nature of the elements
of the set considered (a group of transformations is a typical example). The rules that
describe the relationship between a topology and an algebraic operation are almost always
transparent and natural — the operation has to be continuous, jointly or separately. However,
the methods of study developed in algebra and in topology do not blend so easily, and that
is why at present there are very few systematic books on topological algebra, probably,
none which can be qualified as a reasonably complete textbook for graduate students and a
source of references for experts. The need for such a book is all the greater since the last
half of the twentieth century has witnessed vigorous research on many topics in topological
algebra. Especially strong progress has been made in the theory of topological groups,
going well beyond the limits of the class of locally compact groups. The excellent book
[236] by E. Hewitt and K. A. Ross just sketches some lines of investigation in this direction
in a short introductory chapter dedicated to topological groups.

In the 20th century and during the last seven years many topologists and algebraists
have contributed to Topological Algebra. Some outstanding mathematicians were involved,
among them J. Dieudonné, L.S. Pontryagin, A. Weil, and H. Weyl. The ideas, concepts,
and constructions that arise when topology and algebra come into contact are so rich, so
versatile, that it has been impossible to include all of them in a single book; we have made our
choice. What we have covered here well may be called “topological aspects of topological
algebra”. This domain can be characterized as the study of connections between topological
properties in the presence of an algebraic structure properly related to the topology.

A.D. Alexandroff, N. Bourbaki, M. I. Graev, S. Kakutani, E. van Kampen, A. N. Kol-
mogorov, A. A. Markov, and L. S. Pontryagin were among the first contributors to the theory
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of topological groups. Among those who contributed greatly to this field are W. W. Com-
fort, M. M. Choban, E. van Douwen, V. 1. Malykhin, J. van Mill, and B. A. Pasynkov. These
mathematicians have also contributed greatly to other aspects of topological algebra and of
general topology.

Though the theory of topological groups is a core subject of topological algebra,
a considerable attention has been given to the development of the theory of universal
topological algebras, where topology and most general algebraic operations are blended
together. This subject started to gain momentum with the works of A.1. Mal'tsev and
in later years, some aspects of Mal’tsev’'s work especially close to general topology were
developed by M. M. Choban and V. V. Uspenskij.

The fundamental topic of various types of continuity of algebraic operations was
developed in the works of A. Bouziad, R. Ellis, D. Montgomery., I. Namioka. J. Troallic, and
L. Zippin. The recent excellent book [241] of N. Hindman and D. Strauss contains a wealth
of material on algebraic operations on compacta satisfying weak continuity requirements.

One of the leading topics in the general theory of topological groups was that of free
topological groups of Tychonoff spaces. It is well represented in our book. A. A. Markov,
S. Kakutani, T. Nakayama, and M. I. Graev were at the origins of this chapter. In later years
S. A. Morris, P. Nickolas, O. G. Okunev, V. G. Pestov, O. Sipacheva, K. Yamada, and some
other mathematicians have worked very successtully in this field.

Our book also contains a very brief introduction to topological dynamics. Among
the first who worked in this field were W. Gottshalk, V. V. Niemytzki, and R. Ellis.
J. de Vries, one of the later contributors to the subject, wrote the basic monograph [530]
which gave a strong impuls to its further development. Some recent successes in the field
are connected with the names of S. A. Antonyan, V. G. Pestov, S. Glasner, M. Megrelishvili,
and V. V. Uspenskij. Well-written, very informative surveys [379, 378] by Pestov will orient
the reader on this topic.

In this book we refer also to the works of many other excellent mathematicians, among
them O. Alas, T. Banakh. L. G. Brown, R.Z. Buzyakova, D. Dikranjan, S. Garcia-Ferreira,
P. Gartside, I.I. Guran, K. P. Hart, S. Hernindez, G. Itzkowitz, P. Kenderov, K. Kunen,
W. B. Moors, P. Nyikos, E. Martin-Peinador, I. Prodanov, 1. V. Protasov, D. A. Raikov,
E. A. Reznichenko, D. Robbie, M. Sanchis, D. B. Shakhmatov, A. Shibakov, L. Stoyanov,
A. Tomita, F.J. Trigos-Arrieta, N. Ya. Vilenkin, S. Watson, and E. Zelenyuk. We should
also mention that the development of topological algebra was strongly influenced by survey
papers [109, 110, 113] of W. W. Comfort (and coauthors), and by the books [410], [249] of
W. Roelke and S. Dierolf and of T. Hussain, respectively.

We do not mention here the names of those who have worked recently in the theory of
locally compact topological groups. This vast subject is mostly beyond the scope of this
book, we have provided only a brief introduction to it.

This book is devoted to that area of topological algebra which studies the influence
of algebraic structures on topologies that properly fit the structures. This domain could
be called “Topological invariants under algebraic boundary conditions™. The book is
by no means complete, since this area of mathematics is now rapidly developing in many
directions. The central theme in the book is that of general (not necessarily locally compact)
topological groups. However, we do not restrict ourselves to this main topic: on the contrary,
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we try to use it as a starting point in the investigation of more general objects, such as
semitopological groups or paratopological groups, for example.

While not striving for completeness, we have made an attempt to provide a repre-
sentative sample of some old and of some relatively recent results on general topological
groups, not restricting ourselves just to two or three topics. The areas covered to a lesser
or greater extent are cardinal invariants in topological algebra, separate and joint continuity
of group operations, extremally disconnected and related topologies on groups, free topo-
logical groups, the Raikov completion of topological groups, Bohr topologies, and duality
theory for compact Abelian groups.

One of the generic questions in topological algebra is how the relationship between
topological properties depends on the underlying algebraic structure. Clearly, the answer
to this should strongly depend on the way the algebraic structure is related to the topology.
The weaker the restrictions on the connection between topology and algebraic structure are,
the larger is the class of objects entering the theory. Because of that, even when our main
interest is in topological groups, it is natural to consider more general objects with a less
rigid connection between topology and algebra. Examples we encounter in such a theory
help us to better understand and appreciate the fruits of the theory of topological groups.

Chapter 1 is of course, of an introductory nature. We define, apart from topological
groups, the main objects of topological algebra such as semitopological groups, quasitopo-
logical groups, paratopological groups, and present the most elementary and natural exam-
ples and the most general facts. Some of these facts are non-trivial, even though they are
easy to prove. For example, we establish that every open subgroup of a topological group is
closed, and that every discrete subgroup of a pseudocompact group is finite. It is proved in
this chapter that every infinite Abelian group admits a non-discrete Hausdorff topological
group topology. Quotients, products, and %-products are also discussed in Chapter 1, as
well as the natural uniformities on topological groups and their quotients.

In the course of the book, we introduce and study several important classes of topological
groups. In particular, in Chapter 3 we study systematically w-narrow topological groups
which can be characterized as topological subgroups of arbitrary topological products of
second-countable topological groups. An elementary introduction to the theory of locally
compact groups is also given in Chapter 3. Then this topic is developed in Chapter 9, where
an introduction into the theory of characters of compact and locally compact Abelian groups
is to be found. Since there are several good sources covering this subject (such as [236],
[243], and [327] just to mention a few), we do not pursue this topic very far. However,
elements of the Pontryagin—van Kampen duality theory are presented, and the exposition is
elementary and practically self-contained.

The celebrated theorem of Ivanovskij and Kuz’minov on the dyadicity of compact
groups is proved in Chapter 4. Again, the proof is elementary (though not simple), polished,
and self-contained. We apply Pontryagin—van Kampen duality theory to continue the study
of the algebraic and topological structures of compact Abelian groups in Chapter 9. The
book [243] by K.-H. Hofmann and S. A. Morris provides those readers who are interested
in the duality theory with considerably more advanced material in this direction.

In Chapter 4 we consider the class of extremally disconnected groups, the class of
Cech-complete groups, as well as the classes of feathered groups and P-groups. For each
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of these classes of groups we prove original and delicate theorems and then establish non-
trivial relations between them. Feathered topological groups (called also p-groups) present
a natural generalization of locally compact groups and of metrizable groups. that makes
them especially interesting.

One of the unifying themes of this book is that of completions and completeness. One
can look at completeness in topological algebra either from a purely topological point of
view or from the point of view of the theory of uniform spaces: this latter takes into account
the algebraic structure much better than the purely topological one. The basic construction of
the Ratkov completion of an arbitrary topological group is presented in Chapter 3; later on, it
has many applications. Cech-completeness of topological groups is studied in Chapter 4, and
the relationship of Dieudonné completion of a topological group with the group structure is
a subject of a rather deep investigation in Chapter 6. In particular, we learn in Chapter 6 that
under very general assumptions it is possible to extend continuously the group operations
from a topological group to its Dieudonné completion. We also establish that this is not
always possible. The class of Moscow groups is instrumental in the theory developed in
Chapter 6. The class of R-factorizable groups is studied in Chapter 8. This class serves as
a bridge from general topological groups to second-countable groups via continuous real-
valued functions. It also turns out to be important in the study of completions of topological
groups.

Chapter 5 is devoted to cardinal invariants of topological groups. Invariants of this
kind (which associate with topological spaces cardinal numbers “measuring™ the space
under consideration in one sense or another), play an especially important role in general
topology; probably, this happens because the techniques they provide fit best the set-theoretic
nature of general topology. So one may expect that in the study of non-compact topological
groups cardinal invariants should occupy a prominent place. The following phenomenon
makes the situation even more interesting: The structure of topological groups turns out
to be much more sensitive to restrictions in terms of cardinal invariants than the structure
of general topological spaces. For example, metrizability of a topological group depends
only on whether the group is first-countable or not (Birkhoff-Kakutani’s theorem). For
paratopological groups the statement is no longer true (the Sorgenfrey line witnesses this);
however, a weaker theorem holds: every first-countable paratopological group has a G-
diagonal. How delicate problems involving cardinal invariants of compact groups can be,
is shown by the following simple result: It is not possible either to prove, or to disprove in
Z FC that every compact group of cardinality not greater than ¢ = 2“ is metrizable.

In Chapter 7, a very powerful and delicate construction is presented — that of a free
topological group over a Tychonoft space. Under this construction, any Tychonoff space X
can be represented as a closed subspace of a topological group F(X) in such a way that every
continuous mapping of a space X into a space Y can be uniquely extended to a continuous
homomorphism of F(X) to F(Y). The set X, of course, serves as an algebraic basis of
F(X). However, the relationship between the topology of X and that of F(X) is the most
intriguing; there are many unexpected and subtle results on free topological groups and
quite a few unsolved problems. One of the most important theorems here states that the
cellularity of the free topological group F(X) of an arbitrary compact Hausdorff space X is
countable. Curiously, one can demonstrate that this happens not because of the existence
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of a regular measure on F(X) (in contrast with the case of compact groups). In fact, such a
measure on F(X) exists if and only if X is discrete.

Yet another major topic in the book is that of transformation groups, and the closely
associated concepts of homogeneous spaces and of groups of homeomorphisms. A section
is devoted to these matters in Chapter 3, where it is established that the group of isometries
of a metric space is a topological group, when endowed with the topology of pointwise
convergence. It is proved in this connection that every topological group is topologically
isomorphic to a subgroup of the group of isometries of some metric space. This provides
an important technical tool for some arguments.

Frequently, results on topological groups are followed by a discussion of other structures
of topological algebra, such as semitopological and paratopological groups. This is done in
almost every chapter. However, we have also devoted the whole of Chapter 2 to basic facts
regarding such objects. A paratopological group is a group G with a topology such that
the multiplication mapping of G x G to G is jointly continuous. A semitopological group
G is a group G with a topology such that the multiplication mapping of G x G to G is
separately continuous. A quasitopological group G is a group G with a topology such that
the multiplication mapping of G x G to G is separately continuous and the inverse mapping
of G onto itself is continuous. A natural example of a paratopological group is obtained by
taking the group of homeomorphisms of a dense-in-itself locally compact zero-dimensional
non-compact space, with the compact-open topology. The Sorgenfrey line under the usual
addition is a paratopological group which is hereditarily separable, hereditarily Lindelof
and has the Baire property.

In 1936, D. Montgomery proved that every semitopological group metrizable by a com-
plete metric is, in fact, a paratopological group. In 1957, R. Ellis showed that every locally
compact semitopological group is a topological group. In 1960, W. Zelazko established
that each completely metrizable semitopological group is a topological group. Later. in
1982, N. Brand proved that every Cech-complete paratopological group is a topological
group. Recently A. Bouziad made a decisive contribution to this topic. He proved that
every Cech-complete semitopological group is a topological group. This theorem naturally
covers and unifies both principal cases, those of locally compact semitopological groups
and of completely metrizable semitopological groups.

Since each Cech-complete topological group is paracompact, Bouziad’s theorem
implies that every Cech-complete semitopological group is paracompact. These and related
results, with applications, are presented in Chapter 2. In this same chapter we construct an
operation of a rather general nature on the Cech—Stone compactification BG of an arbitrary
discrete group G. With this operation, the compact space BG becomes a right topological
group. This structure has interesting applications; we mention some of them in problem
sections. The reader who wants to learn more on this subject is advised to study the recent
book [241] by N. Hindman and D. Strauss.

We formulate and discuss quite a few open problems, many of them are new. Each
section is followed by a list of exercises and problems, including open problems. However.
we should warn the reader that some of the new open problems might turn out not to be
difficult after all. That does not necessarily mean that they should have been discarded.
The main interest of many of the new questions we have posed lies in the fact that they
delineate a new direction of research. On many occasions exercises and problems are
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provided with hints, references, and comments. In this way, many additional directions and
topics are introduced. Here are two outstanding examples of old unsolved questions. Is it
possible to construct in Z FC a non-discrete extremally disconnected topological group? Is
it possible to construct in Z FC a countable non-metrizable topological group G such that
G is a Fréchet—Urysohn space?

We would be grateful for the information on the progress of open problems posed in
this book.

We hope that this book will achieve several goals. First, we believe that it can be used as
a reasonably complete introduction to the theory of general topological groups beyond the
limits of the class of locally compact groups. Second, we expect that it may lead advanced
students to the very boundaries of modern topological algebra, providing them with goals
and with powerful techniques (and maybe, with inspiration!). The exercise and problem
sections can be especially useful in that respect. One can use this book in a research seminar
on topological algebra (with an eye to unsolved problems) and also in advanced courses —
at least four special courses can be arranged on the basis of this book. Fourth, we expect that
the book will serve quite effectively as a reference, and will be helpful to mathematicians
working in other domains of mathematics.

The standard reference book for general topology is R. Engelking’s book General
Topology [165]. We expect that the reader either knows the basic facts from general
topology that we need. or that he/she will not find it too difficult to extract the corresponding
information from [165].

We wish to express our deep gratitude to the second author’s former students Constancio
Herndndez Garcia and Yolanda Torres Falcon for their continued help in our work on this
book over many years. We are also indebted to Richard G. Wilson whose comments enabled
us to improve the text.

A.V.ARHANGEL'SKII, M. G. TKACHENKO
arhangel @math.ohiou.edu  mich@xanum.uam.mx

February 21, 2008
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Chapter 1

Introduction to Topological
Groups and Semigroups

Notation. We write N for the set of positive integers, w for the set of non-negative
integers, and [P for the set of prime numbers. The set of all integers is denoted by Z, the set
of all real numbers is R, and @ stands for the set of all rational numbers.

The symbols 7, A, k are used to denote infinite cardinal numbers. A cardinal number 7
is also interpreted as the smallest ordinal number of cardinality 7. Each ordinal is the set of
all smaller ordinals. Thus, w is both the smallest infinite ordinal number and the smallest
infinite cardinal number.

All topologies considered below are assumed to satisfy 7)-separation axiom, that is,
we declare all one-point sets to be closed. The closed unit interval [0, 1] of the real line
R. with its usual topology, is denoted by /. and Sg stands for the convergent sequence
{1/n :n € N} U {0} with its limit point 0, also taken with the usual topology. We use the
symbol C to denote the complex plane with the usual sum and product operations, while
T = {z € C:|z| = 1} is the unit circle with center at the origin of C.

<

1.1. Some algebraic concepts

In this section we establish the terminology and notation that will be used throughout
the book.

In dealing with groups. we will adhere to the multiplicative notation for the binary
group operation. In discussions involving a multiplicative group G, the symbol ¢ will be
reserved for the identity element of G.

We are very much concerned with groups in this course. For many purposes, however, it
is natural and convenient considering semigroups. A semigroup is a non-void set S together
with a mapping (x, v) — xy of § x S to S such that x(yz) = (xy)z forall x, v, z in S. That
is, a semigroup is a non-void set with an associative multiplication. Given an element x of
a semigroup S, one inductively defines

2 3 2 I |

XT = XX, X' = XX, ..., X = XX

forevery n € N. The associativity of multiplication in S implies the equality x"x" = x" "
forall x € S and n, m € N.

Anelement ¢ of a semigroup S is called an identity for S if ex = x = xe forevery x € §.
Not every semigroup has an identity (see items 4) and 6) of Example 1.1.1). However, if
a semigroup S has an identity, then it is easy to see that this identity is unique. Whenever
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we use the symbol e without explanation, it always stands for the identity of the semigroup
under consideration.

A semigroup with identity is called monoid. An element a of a monoid M is said to
be invertible if there exists an element b of M such that ab = ¢ = ba. Note that if a is
an invertible element of a monoid M, then the element b € M such that ab = ¢ = ba is
unique. Indeed, suppose that ab = e, ba = ¢, ac = e, and ca = ¢. Then we have

¢ = ec = (ba)c = blac) = be = b.

This fact enables us to use notation @' for such an element b of M. We also say that b is
the inverse of a. It is clear that (a=')~" = « for each invertible element @ € M. Further,
one can define negative powers of an invertible element a € M by the rule « " = (a~')",
for each n € N. It is a common convention to put ¢’ = e¢. We leave to the reader a simple
verification of the equality a"a” = a" ™" which holds for all n, m € Z.

If every element a of a monoid M is invertible, then M is called a group.

Let S be a semigroup. For a fixed element ¢ € S, the mappings x — ax and x — xa
of § to itself are called the left and right actions of a on S, and are denoted by A, and o,
respectively.
If G is a group, the mapping x — x ' of G onto itself is called inversion. Left and
right actions of every element ¢« € G on G are, in this case, bijections. They are called /eft
and right translations of G by a.
ExampLE 1.1.1. Each of the following is a semigroup but not a group.

) The set Z of all integers with the usual multiplication.

) The set Q of all rational numbers with the usual multiplication.

) The set R of all real numbers with the usual multiplication.

) The set of all positive real numbers with the usual addition in the role of the product
operation.

5) The set N, in which the product of x and y is defined as max{x, v}.

6) The set N, in which the product of x and y is defined as min{x, y}.

7) Any set S with |S| > 1, where the product xy is defined as y.

8) Any set S with |S] > 1, where the product xy is defined as x.

9) The set S(X, X) of all mappings of a set X to itself with the composition of mappings

in the role of multiplication, where | X| > 1. ]

Initems 4) and 6) of the above example, the corresponding semigroups have no identity.
The semigroups in 1)-3), 5), and 9) are monoids.

Now we present a few standard examples of groups.

ExampLE 1.1.2. Each of the following is a group:

1) The set Z of all integers with the usual addition in the role of multiplication.
2) The set @ \ {0} of all non-zero rational numbers with the usual multiplication.
3) The set R\ {0} of all non-zero real numbers with the usual multiplication.

4) The set of all positive real numbers with the usual multiplication.

5) The set {0, 1} with the binary operation defined as follows:

0+0=0 0+1=14+0=1 1+1=0.

This group is denoted by Z(2) or by D; itis called the cyclic group of two elements, or the
two-element group. More generally, for an integern > 1, let Z(n) = {0, 1,...,n — 1}



