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Preface

On behalf of the organizers we would like to welcome all participants to the
“Robot Vision 2001” workshop. Our objective has been to bring together re-
searchers in robot vision, and to promote interaction and debate. Participants
of the workshop come from Europe, US, the Middle East, the Far East, and of
course from New Zealand.

Fifty-two papers were submitted to the workshop, and each paper was thor-
oughly reviewed by at least three reviewers. Seventeen papers were selected for
oral presentation, and seventeen papers were selected for poster presentation.
There were no invited technical papers, to give all participants the sense of
equal opportunity.

The technical scope of the workshop is very wide, and includes presentations
on motion analysis, 3D measurements, calibration, navigation, object recogni-
tion, and more. The schedule of the workshop was therefore prepared to allow,
in addition to the technical presentation, ample time for discussions and inter-
action. We hope that interaction among researchers of such different areas, yet
all part of robot vision, will result in better understanding and research of the
robot vision area.

February 2001 Reinhard Klette, Shmuel Peleg, and Gerald Sommer
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Visual Cues for a Fixating Active Agent

Marten Bjorkman and Jan-Olof Eklundh

Computational Vision and Active Perception Laboratory (CVAP)
Department of Numerical Analysis and Computing Science
Royal Institute of Technology (KTH), S-100 44 Stockholm, Sweden
{celle, joe}@nada.kth.se

Abstract. In order for an active visual agent to act in a dynamic en-
vironment, it needs the ability to fixate onto objects that might be of
interest. In this article we will discuss issues concerning the design of a
binocular system with such capabilities. The problems range from gaze
shifting and saccading, to epipolar geometry and ego-motion estimation.
In the end of the paper it will be shown how scene parts of independent
motion, that will be used to trigger saccades, can be efficiently detected.

1 Introduction

A person that moves around in the world, while looking at various locations and
things in his way, will experience that objects will enter and leave his field of
view, due to his ego-motion or the motion of the objects. He will sometimes shift
his gaze to such objects, to find out e.g. if their trajectories cross his path or to
determine what kind of things they are. In fact, he may be looking for specific
types or instances of objects, for example they may be obstacles to avoid or
something he needs.

These activities form part of what an intelligent agent, acting and existing
in the world, use visual perception for. In our research we are engaged in a
long-term effort to study principles and methods for developing such agents
and implement them in terms of mobile robots, capable of a set of behaviors,
including also grasping and manipulating things. These systems will be engaged
in various foreground and background tasks, defined by their interests and drives.
In this paper we will discuss work on the early visual mechanisms of such an
active and purposive agent, and present how it can derive a spatial understanding
of its environment that can serve higher level processes, such as recognition, and
also motor behaviors.

2 Gaze Shifting and Saccading

Depending on the task at hand, an active visual agent moves its gaze differently
from occasion to occasion. An agent that has found an object of interest, fixates
onto the object and tracks it as it moves, in order to gather as much information
about the object as possible. If the agent is looking for something special, it keeps

R. Klette, S. Peleg, G. Sommer (Eds.): Robot Vision 2001, LNCS 1998, pp. 1-8, 2001.
© Springer-Verlag Berlin Heidelberg 2001



2 Marten Bjorkman and Jan-Olof Eklundh

moving its cameras between different locations, extracting enough information
to judge whether an object is of interest has been found. It could also be the case
that the agent is not at all interested in what is going on in the neighborhoods
and moves its cameras only to stabilize the image data. To detect objects that
might enter the scene, it is necessary to have a background process, that reacts
on radical changes in the images. If the visual data is not stabilized, such changes
might not be properly detected.

There can be a number of reasons why saccades are triggered in a system like
ours. If the agent loses interest in an object that is being tracked, the cameras
may be moved towards a more interesting part of the scene, which means that
saccades are triggered by the robot itself in a top-down fashion. A triggering
might also originate from low-level processes that pass information about pos-
sible interesting objects entering the field of view bottom-up, so that the visual
system can react accordingly. Consequently, it is necessary for an artificial sys-
tem to include low-level vision processes that are capable of detecting areas, that
might be of interest, over the whole visual field.

A difficult question is what is supposed to be considered as interesting. Ob-
jects that directly affect the performance of the agent, will always be necessary
to identify. There are a number of visual cues that might be important for the
agent to know where to look next and since they all might be useful, they have
to be considered in parallel. In this study we have been concentrating on the
ability to identify areas of independent motion. The work is much in the spirit
of [12], but rather than using image motion, figure-ground segmentation is per-
formed using motion in 3D. In cases of translations, it might otherwise be hard
to separate moving objects from the background.

3 Epipolar Geometry Estimation

In order to identify image regions as objects in 3D space, an agent would benefit
from the use of binocular disparities. Disparities have been used extensively
in active vision and robotics, but the applications have often been limited to
behaviors such as navigation and obstacle avoidance [16,9] or simply binocular
tracking [4]. In robotics, cameras have typically been mounted in parallel, so
as to simplify the procedure of calculating the actual disparities. However, if
the binocular camera system is to be used in for example manipulation, parallel
cameras might lead to objects only being visible in one of the two cameras. In
order to maximize the applicability and flexibility of the system, it is necessary
for the system to be able to verge dynamically.

The reason why verged cameras are seldom used in practise, is because it
is hard to keep track of the epipolar geometry, that is the relative position and
orientation of the cameras. Knowing the epipolar geometry is essential if image
features are to be matched between the two cameras and distances measured in
metric space. Most stereo head systems have counters on their motors, which
can be used to estimate the epipolar geometry. However, all systems include
delays and if the cameras are in continuous motion it is often hard to know the
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true relation between two newly grabbed images. The problem gets even harder
when the computational load of the system is varying as the agent goes from
one task to another. In our study, we have concluded that motor counters are
preferably used to get a rough estimate of the epipolar geometry, but if you like
to calculate a dense disparity map, the epipolar geometry better be estimated
using information available in the images themselves.

3.1 The Essential Matrix

Typically the essential matrix E is used to describe the relationship between
the projections of 3D points onto the left and right image planes [11]. For a
system such as the one used in this study, an image point x) in the left image is
constrained to a line, defined by the corresponding projection in the right image
Xr, according to the equation:

T

T 0 —sin(qy) O Ty
xTEx, = [ u —sin(ay) 0  cos(ay) yr | =0. (1)
1 0 —cos(ay) O 1

In the equation the projections, x; and x;., are in homogeneous coordinates. The
pan angles, o and ., are the unknown parameters to be searched by the epipolar
estimation process. The stereo head is constrained such that it only involves two
degrees of freedom, even if a typical binocular stereo system might have as many
as six [3]. However, rotations around the optical axes do not change the visual
data, only its orientation, and will not be needed here. Since the system always
will be in fixation, there is no relative tilt between the cameras. A joint tilt of
both cameras does not change the nature of the problem.

In our work, the angles a; and «.. are iteratively searched in a least square
framework. In order to minimize the influence of outliers, we use random sam-
pling. Random sets of six points each are generated and for each set the angles are
estimated. Unlike RANSAC [6,15], where a winner is selected among the result-
ing estimates, we simply calculate the mean of all values that can be considered
as feasible. It turns out that sets including outliers result in slower convergence
and can easily be eliminated from the final result. Further details and evaluations
can be found in [2].

3.2 - An Optical Flow Model

The essential matrix has got one major disadvantage. If the cameras are located
almost parallel, the least square problem described in Section 3.1 will be illcondi-
tioned and the results can not be trusted. The problem originates from the fact
the flow induced by a small rotation can not be separated from a translation
along the baseline, since the depths have been eliminated in the essential matrix
and the magnitude of the translational flow can not be used.

In the presented system, we use an alternative model based on optical
flow [10], that is typically used in structure from motion algorithms. The dispar-
ities, that is the difference in image position between the two cameras, can be
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described as follows:

((Cilz) _ (1+w2)13+i(COS((iI)—_zSin(al)), )
y xy VA ysin(oy)
The vergence angle S is the sum of the two pan angles, a; and «,, but unlike the
essential matrix, the depth Z has not been eliminated from the equation and has
to be estimated as well. The reason why this approximate model is rarely used in
stereo vision, is because it collapses if the difference in position and orientation
between the cameras is too large. However, our study show that the model is in
fact appropriate for a stereo head system under typical working conditions.
The unknown parameters are solved iteratively, with one pass estimating the
angles and another pass determining the depths. Considering the fact that hori-
zontal disparities never change ordering as the cameras are verging, it is possible
to get a rough estimate of the vergence angle, that can be used to initialize
the procedure. We match a guessed median depth of points in 3D space to the
median disparity of extracted feature points and calculate the corresponding
vergence angle. Simulations show that the procedure will converge, even if the
initial depth is relatively far away from the truth. If the guess is within a factor
of two from the true value, the procedure rarely diverges, but if the error is as
large as 400%, the iterations often diverge for large vergence angles.

3.3 Simulations

Both methods were tested through a number of simulations based on randomly
generated 3D points, spread around an area 10 to 30 baselines in front of the
cameras. Gaussian noise, with a standard deviation of one pixel, was added to
the points that were projected onto two 360 x 288 pixel image planes. Each
simulation included about 500 feature correspondences, out of which 20% were
outliers. These outliers, that were modeled with an additional noise source of 30
pixels, represent features that have been wrongly matched, in the sense that the
two projections do not originate from the same point in 3D space.

The results can be divided into two components, a rotational component and
a translational one, that is the vergence angle and the position of right camera in
the coordinate frame of the left. Figure 1 shows the translational and rotational
errors for a number of cases. The rotational error is about 0.2° for the optical flow
method and slightly larger for the essential matrix. For near parallel systems,
the translation is considerably harder to estimate and for vergence angles of 2°,
this error can be as much as ten times larger. Asymmetric systems are slightly
harder, then symmetric ones. The major difference between the methods is in
the convergence. As the essential matrix method rarely converges for parallel
systems, the second method have problems with vergence angles larger than
15°, especially if the initial median depth is far from the truth. The optical flow
method is about twice as fast as the first method and requires about 27 ms on
a 195 MHz MIPS R10K processor.
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Fig. 1. The standard deviation in degrees of the rotational (a) and translational
(b) errors for various combinations of true rotations and translations. The results
of the optical flow based method are shown in the first four bars of each group, for
different errors in the initial median depth. The last bar in each group represents
the results based on the essential matrix

4 Ego-Motion Estimation

Knowing the motion of the agent itself, the ego-motion, is essential in order to
stabilize the image data and find image regions of independent motion. Just
like the case of epipolar geometry estimation using motor feedback, odometry
can be used to get an idea of the ego-motion, but the problem is somewhat
harder than that. If any conclusions are to be drawn from the images based
on ego-motion, the estimated ego-motion has to be relative to the cameras,
not to the agent itself. As the agent is moving, the neck is rotating and the
cameras are constantly changing orientation, its terribly hard to know the exact
direction and position of the cameras at every instance of time, especially since
all systems involve delays that may be hard to predict. It becomes a necessity
for the system to estimate the ego-motion based on extracted image data, even
if an initial prediction based on odometry might still be of good use.

In a monocular system estimating ego-motion is a very difficult problem, if
the cameras are in translation. There are a number of alternative methods that
can be used [8,14], but so far none of these reach the requirements on robustness
and speed needed for a system like ours. Fortunately, the problem is greatly
simplified in the binocular case. In our system we use reconstructed 3D features,
that are easily found once the epipolar geometry is known, and try to minimize
the equation

N
D lyi— ®xi+ )7 3)
i=1

where R is a rotation matrix, t a translation and, x; and y; are the reconstructed
feature points of two consecutive time frames. Since it can be expected that the
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clouds of 3D points have the same shape in both instances of time, the translation
can be found as the difference in position between the centers of the two clouds,
that is t = §y — X. Subtracting the centers from the 3D points, we get two new
sets of points X; = x; —Xand ¥y =y; — ¥.

We use an approach based on singular value decomposition (SVD), as pro-
posed by Arun et al [1]. It can be shown that minimizing Equation 3 is equivalent

to maximizing
N

F2(R) = 3" 9F R = Trace(RH), @)

i=1

where H = Zf;l %;y{. The rotational component R that maximizes fa(R)
can be found by first performing a SVD of H. The decomposition H = UDVT
consists of two orthogonal matrices U and V, and a diagonal matrix D of non-
negative elements. The minimizer of Equation 4 is then given by R = VUT,
which will be used as our estimated rotation. In practise we perform these oper-
ations twice and use weights, to minimize the influence of reconstructed points
with large errors.

4.1 Simulations

Simulations show that the rotational errors are rarely more than about 0.1°,
which only happens in cases of large rotations and small translations parallel to
the image plane. In such cases the translational error might be as large as 6° in
direction and 0.03 baselines in speed, whereas typical errors are 0.02° in rotation,
2° in translational direction and 0.01 baselines in speed. The feature points
involved in the simulations were generated such as described in Section 3.3. Since
features have to be visible in both cameras at two different instances of time, only
100 reconstructed points were used, with 20% being outliers representing areas
of independent motion. A systematic error of 0.3° was added to the vergence
angle before reconstruction, modeling the inaccuracy of the epipolar geometry
estimation. The computational cost of the method is as low as 3 ms, excluding
the matching of corner features. Since it relies on reconstructed 3D points, the
features have to be matched in stereo, as well as in motion, such as shown in
Fig. 2. The feature extraction itself costs as much as about 15 ms per image,
using Harris [7] corner detector. Further details about the matching processes
and how outliers are identified, can be found in [2].

5 Independent Motion

The benefit of knowing the ego-motion of the cameras is the fact that images of
future time frames can be predicted. Changes in the scene can then easily be de-
tected through simple image subtraction, even if the agent itself is in continuous
motion. In the system presented here, disparities are calculated using a method
based on correlations and dynamic programming [13,5]. These calculations are
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(a) (b) (c)
Fig. 2. The left image (a), the right image including stereo feature correspon-
dences (b) and features matched in motion (c)

done after images have been rectified, using the results from the epipolar estima-
tion. Using the disparities, such as the example in Figure 3(a), and the estimated
ego-motion, a warping is then performed from the current image to the next one.
This predicted image is then subtracted from the true next image. Results after
thresholding can be seen in Fig. 3(b). Points above the threshold are finally put
into a three-dimensional histogram, the largest peak of the histogram is found
and a segmentation, such as the one shown in Fig. 3(c), can be done.

(©)

Fig. 3. The disparity map (a), the result after warping and subtraction (b) and
image regions of independent motion (c)

The methods presented in previous sections were implemented on a Nomad
200 platform, powered by a 450 MHz Pentium III. The complete system runs
in about 6 Hz, including feature extraction, matching, epipolar and ego-motion
estimation, as well as the calculation of dense disparity maps-and segmentation.

6 Discussion

In the presented paper we have been dealing with the problem of designing a
system capable of dynamic fixation. The technical part of the paper included a
presentation of two different methods for estimating the epipolar geometry of a
binocular system. It was shown that this is in fact feasible in terms of speed, as



