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Diffusion and Reactions in Fractals and Disordered Systems

Fractal structures are found everywhere in Nature, and as a consequence anomalous
diffusion has far-reaching implications for a host of phenomena. This book
describes diffusion and transport in disordered media such as fractals, porous
rocks, and random resistor networks. Part I contains material of general interest
to statistical physics: fractals, percolation theory, regular random walks and
diffusion, continuous-time random walks, and Lévy walks and flights. Part II
covers anomalous diffusion in fractals and disordered media, while Part III serves
as an introduction to the kinetics of diffusion-limited reactions. Part IV discusses
the problem of diffusion-limited coalescence in one dimension. This book written
in a pedagogical style is intended for upper-level undergraduates and graduate
students studying physics, chemistry, and engineering. It will also be of particular
interest to young researchers requiring a clear introduction to the field.
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Preface

Diffusion in disordered, fractal structures is anomalous, different than that in
regular space. Fractal structures are found everywhere in Nature, and as a conse-
quence anomalous diffusion has far-reaching implications for a host of phenomena.
We see its effects in flow within fractured and porous rocks, in the anomalous
density of states in dilute magnetic systems, in silica aerogels and in glassy
jonic conductors, anomalous relaxation in spin glasses and in macromolecules,
conductivity of superionic conductors such as hollandite and of percolation clusters
of Pb on thin films of Ge and Au, electron-hole recombination in amorphous
semiconductors, and fusion and trapping of excitations in porous membrane films,
polymeric glasses, and isotropic mixed crystals, to mention a few examples.

It was Pierre Gilles de Gennes who first realized the broad importance of
anomalous diffusion, and who coined the term “the ant in the labyrinth”, describing
the meandering of random walkers in percolation clusters. Since the pioneering
work of de Gennes, the field has expanded very rapidly. The subject has been
reviewed by several authors, including ourselves, and from various perspectives.
This book builds upon our review on anomalous diffusion from 1987 and it covers
the vast material that has accumulated since. Many questions that were unanswered
then have been settled, yet, as usual, this has only brought forth a myriad of other
questions. Whole new directions of research have emerged, most noticeably in the
area of diffusion-limited reactions. The scope of developments is immense and
cannot possibly be addressed in one volume. Neither do we have the necessary
expertise. Hence, we have chosen once again to base the presentation mostly on
heuristic scaling arguments.

The book is written for graduate students, and as an introduction to researchers
wishing to enter the field. Much emphasis has been put on its pedagogical value.
The end of each chapter includes exercises, open challenges, and references for
further reading. The list of open challenges is not exhaustive. It is intended
to inspire beginners (many of the challenges require computer programming, for
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Xiv Preface

which our youngsters show remarkable aptitude), and to educate the readers to
identify new directions of research. Likewise, the references given are simply
those that we had at hand. Many excellent works have been left out. Nothing
is implied about their relative priority or importance. We merely wished to
convey a general impression of the field’s scope, and to provide with some starting
points. In spite of our efforts, there are bound to be misprints, inaccuracies,
and outright mistakes. Please alert us to their presence by sending messages to
benavraham@clarkson.edu (D.b-A.), or to havlin@ophir.ph.biu.ac.il (S.H.).

The book is divided into four parts. Although they are closely related, they
can be studied independently from one another. We ourselves have used different
combinations in several graduate and upper-level undergraduate courses. Part I
contains material of general interest to statistical physics: fractals, percolation
theory, regular random walks and diffusion, continuous time random walks,
and Lévy walks and flights. Part II expands on our previous review, covering
anomalous diffusion in fractals and disordered media. Part III serves as an
introduction to the kinetics of diffusion-limited reactions. (The classical case of
reaction-limited kinetics is briefly reviewed in Chapter 11.) By and large, the
approach used in Parts II and III is that of scaling. Diffusion-limited reactions are
still poorly understood, so we believe that examples of exactly solvable models are
particularly important. One such example is discussed in Part IV, where we attack
the problem of diffusion-limited coalescence in one dimension with the method of
inter-particle distribution functions.

We wish to thank our colleagues L. A. N. Amaral, J. S. Andrade, M. Barthelemy,
S. Buldyrev, A. Bunde, M. A. Burschka, C. R. Doering, N. V. Dokholyan,
A. L. Goldberger, P. Ch. Ivanov, P. R. King, J. Klafter, R. Kopelman, E. Koscielny-
Bunde, P. A. Krapivsky, H. Larralde, Y. Lee, F. Leyvraz, R. Nossal, C.-K. Peng,
V. Privman, S. Redner, H. E. Roman, S. Russ, M. Schwartz, S. Schwarzer,
H. Sompolinsky, H. E. Stanley, H. Taitelbaum, G. M. Viswanathan, I. Webman,
and G. Weiss for years of fruitful collaborations, and we gratefully acknowledge
the input of our students. Special thanks are due to Jan Kantelhardt for the beautiful
cover color prints, to Roi Elran for his help with the preparation of the figures, and
to S. Capelin, J. Clegg, S. Holt, and T. Fishlock, of Cambridge University Press,
for their patience and for help with the technical aspects of publishing. This book
could not have been written without the help of our families and friends. We thank
them for their continuous encouragement and support.

Daniel ben-Avraham

Shlomo Havlin
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Part one

Basic concepts

The first part of the book includes introductory concepts and background necessary
for the understanding of anomalous diffusion in disordered media.

Fractals might be familiar to most readers, but their importance in modeling
disordered and random media, as well as certain characteristics of the trails
made by diffusing particles, makes it worthwhile to spend some time reviewing
the subject. In Chapter 1 we provide working definitions of fractals, fractal
dimensions, self-affine fractals, and related ideas. More importantly, we describe
several algorithms for determining whether a particular object is a fractal, and
for finding its fractal dimension. In the early days of fractal theory much effort
was spent on merely exploring the fractal properties of various natural objects and
physical models, using precisely such algorithms, and they continue to be essential
tools for the study of disordered phenomena.

Percolation, which is reviewed in Chapter 2, is perhaps the most important
model of disordered media and of naturally occurring fractals. Percolation owes
its enormous appeal to its simplicity (it can be defined and analyzed using only
geometrical concepts), its remarkably wide range of applications, and its being
one of the most basic models of critical phase transitions. Relevant to our
purpose is the fact that studies of anomalous diffusion have traditionally focused
on percolation systems, and the problem still attracts considerable interest. The
percolation transition, on the other hand, gives us an excellent opportunity to
introduce several useful concepts, such as critical exponents, scaling, and the upper
critical dimension.

In Chapter 3 we present a brief introduction to random-walk theory. Discrete
random walks (in regular lattices) are discussed first, then diffusion and the
diffusion equation are obtained as limiting cases. In the course of the book,
we shift freely between these discrete (random walk) and continuous (diffusion)
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representations. The method of generating functions is discussed in some detail,
owing to its wide applicability in other realms of statistical physics. It also eases
the introduction and discussion of continuous-time random walks (CTRWs).
Finally, in Chapter 4 we review other popular models of transport: Lévy walks,
Lévy flights, and long-range correlated walks. These (and some instances of the
CTRW) were originally introduced as models that exhibit anomalous transport
kinetics even in regular lattices, and are therefore relatively easy to analyze, but
eventually they came to be studied also in fractals and disordered lattices.



1

Fractals

Fractals model disorder in Nature far more successfully than do objects of classical
geometry. In the now famous words of B. Mandelbrot: “Clouds are not spheres,
mountains are not cones, coastlines are not circles, bark is not smooth, nor does
lightning travel in a straight line” (Mandelbrot, 1982). We begin with a discussion
of fractals and their most basic properties: self-similarity and symmetry under
dilation, or scaling, and the fractal dimension and the ways to determine it. Our
goal is to develop an intuitive undersfanding, and to provide some basic working
tools.

1.1 Deterministic fractals

Deterministic fractals are idealized geometrical structures with the property that
parts of the structure are similar to the whole. While this self-similarity is a general
property of fractals, it is rather a vague definition, and the best way to understand
what fractals really are is through examples. Some well-known deterministic
fractals are shown in Figs. 1.1-1.3.

The Koch curve (Fig. 1.1) is constructed from a unit segment. The middle third
section is replaced by two other segments of length 1, making a tent shape, as
seen in Fig. 1.1a. The same procedure is repeated for each of the four resulting
segments (of length %). This process is iterated ad infinitum. The limiting curve
is of infinite length, yet it is confined to a finite region of the plane. Thus, the
Koch curve is somewhat “denser” than a regular curve of dimension d = 1, but
certainly “sparser” than a two-dimensional object (its area is zero!). Intuitively,
then, its dimension should be between one and two. If a regular object — such as
a line segment, a square, or a cube, etc. — of dimension d is magnified by a factor
b, the original object would fit 5¢ times in the magnified one. This consideration
may serve as a working definition of the fractal dimension, ds (see Appendix A for
more rigorous definitions). In the Koch curve, magnified by a factor of three, there
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Fig. 1.1. The Koch curve. (a) Construction of the curve. The initiator is a unit segment.
The generator replaces the middle third section by two similar sections, forming the shape
of a tent. Two iterations of this process are shown. (b) The Koch curve after four iterations.

fit exactly four of the original curves. Therefore, its fractal dimension is given by
3% =4,0ord; =In4/In3 ~ 1.262.

Perhaps the most popular fractal is the Sierpinski gasket (Fig. 1.2). Here one
begins with an equilateral triangle that is divided into four equal subunits, and
the central subunit is discarded. Again, the process is repeated recursively. The
resulting fractal dimension is given by 2% = 3, or d; = In3/In2 ~ 1.585.

The Sierpinski sponge (also known as the Menger sponge) (Fig. 1.3) is generated
from a cube that is subdivided into 3 x 3 x 3 = 27 smaller cubes. The small cube at
the center and its six nearest neighbors are then discarded. The same is done with
each of the remaining 20 cubes, and the process is iterated indefinitely. The limiting
object has zero volume, but infinite surface area. This property is consistent with
the fractal dimension of the sponge; 3% =20, 0ord; = In 20/In3 =~ 2.727, between
two and three.

All deterministic fractal lattices are obtained in a similar way to the examples
above. Construction begins from a genus, called the initiator (e.g., the unit segment
in the case of the Koch curve, an equilateral triangle for the Sierpinski gasket, etc.)
and proceeds with a set of operations that are repeated indefinitely in a recursive
fashion. This set of operations is called the generator.

The generator may be one of two kinds. In one case, the initiator is replaced
by smaller replicas of itself and the fractal builds inwardly, towards ever smaller



