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Preface

It has been known since antiquity that Nature is full of wonderful geometric structures
(cellular, helical, vertex, crystalline etc), and some remarkable purely mathematical struc-
tures have been discovered in the last century (resonance structures, strange attractors,
fractals). Besides being of great scientific interest, these structures often possess a very
beautiful visual form. In recent years the structures have been the object of an extensive
research activity in various fields of Science. The dynamical theory of formogenesis is widely
discussed in the literature.

This book attempts to provide both the visual presentation and theoretical analysis of
the structures arising in nonlinear dynamical systems. The WInSet program (developed by
the authors) is used to generate the images of many invariant structures related to a variety
of phenomena of nonlinear dynamics. The images of structures dealt with in the book may
be referred to as "fractal design” or "esthetic chaos”.

The book consists of two parts. Part I is intended for a wide readership and is concerned
with the WInSet software for the visualization of invariant sets of classical nonlinear
dynamical systems. The features of the program are described, and the standard (built-
in) maps, differential equations and fractals are listed, for which WInSet can draw the
invariant sets. The program functions in Windows 95 environment and can be used for
computer-aided design.

Part II presents the mathematical investigation of invariant sets in low-dimensional
dynamical systems and diffusion equations, and explains how the invariant structures appear
and requires a sound mathematical knowledge.

Chapters 1, 4-7 were written by A. Morozov (except Section 4.4.1 and Section 4.4.2
written by T. Dragunov), Chapter 2 — by O. Malysheva and T. Dragunov, Chapter 3
by S. Boykova, Chapter 8 — by A. Morozov and O. Malysheva. Writing and debugging of
the WInSet source code in Delphi-3 was mainly done by T.Dragunov, while some modules
were written by the other authors. The compiler for user-defined systems was written by
S. Boykova and T. Dragunov.

WInSet grew out of the program called Mader developed by Morozov in early 90-s.

The book is based on the monograph "Invariant Sets of Dynamical Systems for
Windows” published in Russia in 1998, written by the same authors [68]. The Chapter
8 has been added especially for the English edition. Besides, Chapters 1-3 have been
revised, and the new version of the WInSet application has been created.

The authors are grateful to Mark Shereshevsky for his valuable help in the preparation
of the English version.

This work was partially supported by Russian Foundation of Basic Researches, grant
No 99-01-00172 and by Ministry of Education, Russia, grant No 97-0-1.83.
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Chapter 1

Introduction

1.1. Invariant Structures Everywhere

What do we mean when we say ”invariant structures” or ”invariant set”? According to
the encyclopedic dictionary the noun ”invariant” originates from the latin ”invarians”
(changeless) and means a value (a quantity) which is left unchanged by certain
transformations. If this property is displayed not by a single value, but a set of values
(or points), then such a set is referred to as invariant set. Mathematicians give more
rigorous definitions using special mathematical concepts. One of such definitions
will be given below, when we discuss dynamical systems. A simple example of an
invariant set is provided by the collection of figures with a fixed area on the plane
under an isometry (or any area-preserving transformation). A square with all four
corners positioned on the coordinate axes in the plane (thus centered at the origin)
is an invariant set under the rotation by 90°. This type of invariance underlies the
concept of symmetry. Another example of an invariant set is given by the orbit of
the Earth under the transformations in the space of the Solar system induced by the
planetary motions in time.

The Introduction and Part I of the book are intended for a wide audience and
presuppose no special preliminary background. The only exception may be the
notion of "dynamical system” which is closely related to the concept of ”differential
equations”. The reader who is not familiar with (or interested in) differential
equations may limit his or her reading by our consideration of discrete dynamical
systems (i.e. maps) and experiment with the fractals generated by them. In this
part of the book we mainly focus on the WInSet computer program and the results
obtained by using it. The program not only enables the user to observe the invariant
sets of dynamical systems (in particular, the fractals), but also allows one to introduce
his own dynamical system and investigate its behavior and the fractals it generates.
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Its sofisticated interface leads the user into the wonderful world of fractals, a world
full of fascinating colors and harmony.

Part II is devoted to the description of invariant sets and demands from the reader
the mathematical background in the amount of the first three years of college math.
After having read it you will become familiar with the mathematical nature of the
phenomena you observe on the computer screen when using, for example, WInSet
software. Behind them are the frontline problems of the nonlinear dynamics, such as
the nonlinear resonance, self-oscillations, irregular invariant sets (strange attractors,
fractals etc.)

Shortly speaking, the main topic of the book is the visualization of invariant sets,
and the demonstration of their beauty and somewhat mysterious inner harmony.
We hope that this visual splendor will provide the inspiration (so important in
the progress of sciences) for those who have a scientific interest in the nonlinear
phenomena, as well as for those who are just curious about all this marvelous pictures.

1.1.1. Resonance Structures in Celestial Mechanics

Celestial mechanics is one of the most fascinating sciences, since it deals with the
fundamental laws which govern the universe. It may even be considered the cradle of
the calculus and the theory of differential equations and dynamical systems (for it is
the differential equations that describe the motions of celestial bodies). In celestial
mechanics the equations are usually assumed to be conservative, i.e. they preserve
a certain quantity (the full energy of the system, for example). This is exactly the
invariance property. The conservative systems are normally presented in a special
form - as a so-called Hamiltonian system. In the modern mechanics and mathematics
there is a field called Hamiltonian mechanics which deals with the general properties
of this type of systems. The Hamiltonian systems generate resonance structures .f
astounding beauty (see Chapter 4).

Although a significant progress has been achieved in the study of rclestial
mechanics, one crucial question remains open. It is the question of ths stability
of Solar system. Whether the configuration of Solar system will remair. stable over
an infinite interval of time is not known. So it is unclear whether, for i.stance, Earth
will always travel along an elliptic orbit close to the current one, r¢ it will undergo
a significant deformation and our planet will fall on the Sun cs, on the contrary,
will leave the Solar system altogether. The same question cov'd be posed about the
satellites of the planets. The question has been studied for more than two hundred
years and is still unanswered. So, it is not known whethe. the current configuration
of the Solar system is a result of a long evolutionary pro-.ess or it ”was born like this”.
The evolutionary model seems more plausible. In fevor of it speaks the analysis of
quasi-conservative systems and, most of all, the res..nance structures in such systems.
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The phenomena of ”"capture in a resonance” and "synchronization” can explain the
"resonance” structure of the Solar system.

The macroproblems of celestial mechanics are similar, in their nature, to the
microproblems on the structure of atom. Both are the problems on the motion of
a "particle” in a central field. In the former problem the ”particle” is a planet, in the
latter — the electrons.

The resonance structures are invariant ones. Further in the book (Chapters 4-6) we
shall discuss these structures in more detail by considering some simplified models.
Right now let us look at the resonance equations in the solar system. Currently
the scientists know with good precision the mean daily motions of the planets w;,
j =1,...,9 (expressed in degrees). So, one can check if the resonance equations are
satisfied.

A resonance is said to occur if the equality

j=1

holds, where k; are integer numbers, and n is the number of frequencies. If all planets
are taken into considerations, then n = 9.

The resonance condition is the condition of commensurability of the frequencies.
The number ||k|| = Y27, |k;| is called the order of the resonance. The main perturbing
body in Solar system is Jupiter whose mass is many times larger than the masses of the
other planets. So, let us consider the lowest resonances in the three body problem
”Sun-Jupiter-planet”. The lowest order of resonance ||k|| = 3206 observed for the
system Sun-Jupiter-Neptune is very large [29]. It turns out that the higher is the
order of the resonance the less it is manifested in the motion of the bodies. Let us
then consider not the exact resonances, but rather those close to the exact ones, i.e.
instead of the resonance equality consider the condition in the form of inequality:

krwy + kawna < €,

where £ > 0 is small enough, w, is the mean daily motion of the Jupiter, and wy is
the mean daily motion of the planet. If, for instance, ¢ = 5" (5 seconds), then the
lowest order of resonance in the system Sun-Jupiter-Saturn is 7 (k; = 2,ky = 5),
and the highest one is 649 (k; = 617,k, = 32) observed in the system Sun-Jupiter-
Venus [29]. For the inner (with respect to Jupiter) planets increasing the ”aperture”
€ significantly lowers the maximal order of resonance.

Resonance relations are also observed in the satellite systems, as well as in planet-
satellite type of systems. Laplace noticed the remarkable triple-frequency resonance
in the satellite system of Jupiter formed by the mean motions of Jo, Europe and
Ganimedes: v; — 3vy + 2v3 & —0.0003° (where vy, vy, v3 are the mean motions of Jo,
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Fig. 1.1. The structure of the rings of Saturn (fragment).

Europe and Ganimedes respectively. The system Earth-Moon has the resonance with
kl = kg =1.

The satellite system and the rings of Saturn is a unique formation. Fig 1.1
shows a fragment of Saturn’s system of rings obtained by Voyager-2 in August 1981
(reproduced from [93]). The structure of the rings looks somewhat like a fractal.
Such invariant structures will be discussed in Section 1.1.3. and Chapter 7.

Another remarkable formation in the solar system is the belt of small planets
(asteroids) which consists of more than 1800 objects. The statistical distribution of
asteroids according to their mean motion is extremely irregular. Amazingly, some of
its maxima and minima occur at the resonance values of the mean motion in system
Jupiter-asteroid [29)].

1.1.2. Cellular, Spiral, Vortexr and Crystal Structures

Let us turn to more "earth-bound” sciences. In everyday life we meet (usually
unaware of it) myriads of fascinating invariant structures of very diverse nature. In
this section we briefly discuss some of those beauties. A good reading on various
cases of formogenesis (formation of structures) in physics, chemistry, biology etc. is
the recent book by Rabinovich and Ezersky [84].

Almost everyone heard that the structure of a honeycomb is hexagonal (the
hexagons fit together, side to side, to form a ”tiling” of the plane). A structural
regularity can be observed in the configurations of flowers, seeds, leaves. The leaves
of a shoot of a plant and the seeds in the sunflower display a regular spiral structure.
There is a tendency towards a spiral in Nature. The botanists call it philotaxis.
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Perhaps the most striking manifestation of Nature’s romance with the spiral is the
heautiful coach shell Nautilus pompilius !.

Following Henry Weyl [104] we now describe one mathematical interpretation of
the harmony of all these phenomena of Nature. One of the most common motions of
a body in the three-dimensional space is the combination of a rotation around an axis
with a translation along that axis. The trajectory of every point (outside the axis)
under this motion yields a helical curve. Let us present the angle of the rotation in
such a motion in the form £360°, where p, ¢ are relatively small integers. It has been
observed that for the spiral describing the distribution of leaves around a central stem
in plants the fractions 5 are formed by the consequent Fibbonacci numbers:

11235 8 1321

1'273’578713721734™ 77
which converge to the irrational number (v/5 — 1)/2, which is the famous "golden
mean”.

It is worth noting that the above expression for the rotation angle in the spiral
motion is similar to the resonance frequency in a two-mode system (e.g. in celestial
mechanics). where p and ¢ represent the order and the type of the resonance,
respectively. This similarity can be interpreted as some kind of "resonance” in the
world of plants.

Another example coming from physics is the geometry of convective motions.
These motions give rise to the convective cells which could assume the shape of one-
dimensional rollers or form a quadratic or hexagonal lattice (Benar cells). Let us
consider the convection in a heated layer of liquid — the so-called Rayleigh-Benar
convection.

Following Berge [14] we consider the horizontal layer of liquid (silicon oil) bounded
from above and from below by rigid heat-conductive plates. If the Rayleigh number
Ra (proportionate to the difference of temperatures in the vertical direction) exceeds
certain critical value Ra,, then sets in a convective motion taking the shape of rotating
rollers. Notice, that the velocity field everywhere has zero projection onto the axis
of the rollers (see Figs. 1.2, 1.3(a)). When Ra increases even further the structure
persists until Ra exceeds another fixed value Ra,, > Ra,. The third component of
the velocity field becomes non-zero, and the secondary set of rollers appears, with
axes perpendicular to those of the primary rollers (Fig. 1.3(b)). In Fig.1.3(b) one
cane notice a similarity with a two-dimensional crystal. Values Ra,. Ra,, are called
bifurcational values.

Further increase of the Rayleigh number leads to the appearance of local contrac-
tion near the boundary (pinch effect) when Ra = 20Ra,. If we now stop increasing Ra

'This shell is held by the dancing Shiva of the Hindu myth as one of the instruments through
which he initiates creation (translator’s note.)
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Fig. 1.3. Two-dimensional (a) and three-dimensional (b) structures.

and watch how the system evolves in time when Ra =~ 20Ra, if fixed (Fig. 1.4). Soon
after the contraction begins there appears a isolated defect, around which the regular
structure quickly disintegrates. This disintegration is followed by a metamorphosis
which involves creation of a polygonal, cellular convective structure (Fig. 1.4 (d)).
After 15 hours the entire structure disintegrates (melts) which is seen in Fig. 1.4 (f).
Thereafter, the picture is changing continuously in a random way and the turbulence
appears.

If we replaced the rectangular reservoir by a cylindrical one with diameter D =
20d, where d is the height of the cylinder, we would have got new invariant structures,
some of which are shown in Fig. 1.5.

The so-called vortex structures are well known in hydrodynamics. They appear
when a liquid flows round certain bodies. Analogous structures are known in
aerodynamics. Let us at look at some experiments illustrating the vortex structures.

The following experiment was designed by Gak [16] (our discussion of its results
below follows [20]). The experiment is based on the use of a magneto-hydrodynamic
drive which allows to create a spatially periodic electromagnetic field in a thin layer
of a weekly conducting liquid (electrolyte). Initially, the experiments of this type
were conducted in a cuvette of dimensions 24 cm X 12 c¢m, 2-3 mm deep and with
spatial period of 4.4 cm. By changing the density of the electric current between the
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Fig. 1.4. Stages of "melting” of a three-dimensional structure at Ra

Fig. 1.5. Convective structures in a cylindrical reservoir.

~
~

20Rasg.
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Fig. 1.7. Vortex structures in a round cuvette.

two electrodes immersed in the layer of liquid, one can create the flow with various
Reinolds numbers (i.e. with different velocities of the liquid’s movement). For some
critical value of the Reinolds number (Re,.) there appear "secondary” currents. In
Fig. 1.6 the reader can see the picture of the secondary currents for Re/Re,, = 1.1
(a) and Re/Re,., = 1.25 (b).

Obukhov et al who experimented with a round cuvette also observed the secondary
vortex currents [27, 20] (see Fig. 1.7).

The picture of the secondary currents presented in Fig. 1.7 (b) looks similar to
the chain of vortices observed over Antarctica. The vortex structures shown in Figs.
1.6, 1.7 resemble the resonance structures in systems with 3/2 degrees of freedom (see
Chapter 4).

Now let us talk about crystals. The most popular example of a crystal is a
snowflake which has a hexagonal shape. In general, the symmetry in crystals can



