BASIC ECONOMETRICS

Damodar N. Gujarati

Third Edition

McGRAW-HILL INTERNATIONAL EDITIONS

Economic Series

BASIC ECONOMETRICS

Third Edition

Damodar N. Gujarati

United States Military Academy, West Point

McGraw-Hill, Inc.

New York St. Louis San Francisco Auckland Bogotá Caracas Lisbon London Madrid Mexico City Milan Montreal New Delhi San Juan Singapore Sydney Tokyo Toronto

BASIC ECONOMETRICS International Editions 1995

Exclusive rights by McGraw-Hill Book Co. – Singapore for manufacture and export. This book cannot be re-exported from the country to which it is consigned by McGraw-Hill.

Copyright © 1995, 1988, 1978 by McGraw-Hill, Inc. All rights reserved. Except as permitted under the Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval system, without the prior written permission of the publisher.

4 5 6 7 8 9 0 CMO PMP 9 8 7 6

This book was set in New Aster by Publication Services, Inc. The editors were Scott D. Stratford and Lucille H. Sutton; the production supervisor was Friederich W. Schulte. The cover was designed by Tana Kamine. Project supervision was done by Publication Services, Inc.

Library of Congress Cataloging-in-Publication Data

Gujarati, Damodar N.
Basic econometrics / Damodar N. Gujarati. - 3rd ed.
p. cm.
Includes bibliographical references (p.) and index.
ISBN 0-07-025214-9
1. Econometrics. I. Title.
HB139.G84 1995
330'.01'5118-dc20

94-35295

When ordering this title, use ISBN 0-07-113964-8

Printed in Singapore

ABOUT THE AUTHOR

After teaching for more than 28 years at the City University of New York, Damodar N. Gujarati is currently a professor of economics in the Department of Social Sciences at the U.S. Military Academy at West Point, New York. Dr. Gujarati received his M.Com. degree from the University of Bombay in 1960, his M.B.A. degree from the University of Chicago in 1963, and his Ph.D. degree from the University of Chicago in 1965. Dr. Gujarati has published extensively in recognized national and international journals, such as the *Review of* Economics and Statistics, the Economic Journal, the Journal of Financial and Quantitative Analysis, the Journal of Business, the American Statistician, and the Journal of Industrial and Labor Relations. Dr. Gujarati is an editorial referee to several journals and book publishers and is a member of the Board of Editors of the Journal of Quantitative Economics, the official journal of the Indian Econometric Society. Dr. Gujarati is also the author of *Pensions and the New* York City Fiscal Crisis (the American Enterprise Institute, 1978), Government and Business (McGraw-Hill, 1984), and Essentials of Econometrics (McGraw-Hill, 1992). Dr. Gujarati's books on econometrics have been translated into several languages.

Dr. Gujarati was a Visiting Professor at the University of Sheffield, U.K. (1970–1971), a Visiting Fulbright Professor to India (1981–1982), a Visiting Professor in the School of Management of the National University of Singapore (1985–1986), and a Visiting Professor of Econometrics, University of New South Wales, Australia (summer of 1988). As a regular participant in USIA's lectureship program abroad, Dr. Gujarati has lectured extensively on micro- and macroeconomic topics in countries such as Australia, Bangladesh, Germany, India, Israel, Mauritius, and the Republic of South Korea. Dr. Gujarati has also given seminars and lectures in Canada and Mexico.

To the Memory of "Akka" (Shalini) and "Suru" (Suryakant)

PREFACE

As in the previous two editions, the primary objective of the third edition of *Basic Econometrics* is to provide an elementary but comprehensive introduction to econometrics without resorting to matrix algebra, calculus, or statistics beyond the elementary level.

In this edition I have attempted to incorporate some of the developments in the theory and practice of econometrics that have taken place since the publication of the second edition in 1988. In addition, this revision has given me the opportunity to simplify the discussion of some topics included in the previous editions and to add some new material on these topics. The major changes in this edition are as follows:

- 1. In Chapter 1, I have expanded the discussion of the nature and sources of data available for econometric analysis. In view of the increasing use of time series data in economic analysis, I have introduced very early the concept of a **stationary time series**, a concept that is crucial for analyzing data involving economic time series.
- **2.** In Chapter 3, I present a more extended discussion of the assumptions of the classical linear regression model (CLRM). The CLRM is the foundation of econometrics. In this chapter I also discuss the **Monte Carlo** simulation experiments.
- **3.** In Chapter 5, on hypothesis testing, I have introduced the concept of the *p* value, or the exact level of significance, of a test statistic. In this chapter, I also discuss the Jarque-Bera test of normality.
- **4.** In Chapter 8, on hypothesis testing in the context of multiple regression models, I have streamlined the discussion. This chapter also includes a discussion of the choice between linear and log-linear regression models. In the appendix to this chapter, I discuss, at an elementary level, the **like-lihood ratio (LR) test of hypothesis.**
- 5. In Chapter 10, on multicollinearity, I now give equal billing to micronumerosity (smallness of sample size), a concept due to Arthur Gold-

berger. I also introduce **tolerance** and **inflation-variance** tools for detecting multicollinearity.

- 6. In Chapter 11, on heteroscedasticity, I have now included the **Breusch-Pagan-Godfrey test** and **White's test** of heteroscedasticity. I also discuss White's heteroscedasticity-consistent variances and standard errors of OLS estimators.
- 7. In Chapter 12, on autocorrelation, I have included these tests: asymptotic test of autocorrelation, Breusch-Godfrey test of higher-order autocorrelation, and Berenblut-Webb test. Included in this chapter is also the **ARCH model**, which has been increasingly used in financial economics.
- Chapter 13, on model building, discusses nominal versus true level of significance in the presence of data mining, and the Lagrange multiplier (LM) test for adding variables to a regression model.
- **9.** In Chapter 14, which is new, I discuss alternatives to the traditional econometric methodology. In particular, I discuss Leamer's and Hendry's approaches to econometrics. Also included in this chapter are tests of non-nested hypotheses, in particular the **Davidson-MacKinnon** *J* **test.**
- 10. Chapter 15, on dummy variables, now includes a discussion of dummies in combining time series and cross-sectional data. I also show how the dummies can be used in the presence of autocorrelation and heteroscedasticity. An exercise in this chapter discusses Zellner's seemingly unrelated regression (SURE) technique.
- **11.** Chapter 16, on dummy dependent variable regression models, now includes a discussion of the **Tobit model**.
- **12.** Chapter 17, on dynamic regression models, now includes a discussion of both the **Granger test** and **Sims's test** of causality.
- **13.** Chapters 18, 19, and 20, on simultaneous-equation models, now contain tests of simultaneity and exogeneity. These chapters also discuss the relationship between causality and exogeneity.
- 14. In recognition of the growing importance of time series data in economic analysis, I have included two new chapters on time series econometrics. In Chapter 21, I introduce the key concepts of time series analysis, such as stationarity, random walk, unit root, Dickey-Fuller and augmented Dickey-Fuller tests of stationarity, deterministic and stochastic trends, trend-stationary and difference-stationary stochastic processes, cointegration, Engle-Granger tests of cointegration, error correction mechanism, and spurious regression. In Chapter 22 I discuss the Box-Jenkins, or ARIMA, and vector autoregression (VAR) approaches to economic forecasting. These are alternatives to the traditional single- and simultaneous-equation approaches to forecasting.

I have added several new exercises. The exercises given at the end of chapters are now divided into two groups: questions and problems. The latter are data-based exercises (I am a firm believer in learning by doing). All these changes have considerably expanded the scope of this book. I hope this gives the instructor substantial flexibility in choosing topics that are appropriate to the intended audience. Here are some suggestions about how this book may be used: **One-semester course for the nonspecialist:** Appendix A; Chaps. 1 through 8; an overview of Chaps. 10, 11, and 12 (omitting all the proofs); and Chap. 15. The theoretical exercises can be omitted. **One-semester course for economics majors:** Appendix A; Chaps. 1 through 8; and Chaps. 10 through 15. If matrix algebra is used, include Appendix B and Chap. 9. Some of the theoretical exercises can be omitted. **Two-semester course for economics majors:** Appendices A and B, and Chaps. 1 through 22. Mathematical proofs given in the various appendices can be covered on a selective basis. Additionally, the instructor may want to cover the topic of nonlinear (in parameters) regression models.

This revision would not have been possible without the constructive comments, suggestions, and encouragement that I have received from several people who have read the various drafts. In particular, I would like to acknowledge my debt to the following professors, without, of course, holding them responsible for any deficiencies that remain in the book: Ted Amato, University of North Carolina; Dale Belman, University of Wisconsin–Milwaukee; Tom Daula, U.S. Military Academy; Mary Deily, Lehigh University; Frank Diebold, University of Pennsylvania; David Garman, Tufts University; Sushila Gidwani-Bushchi, Manhattan College; William Greene, New York University; Dennis Jansen, Texas A&M University; Jane Lillydahl, University of Colorado; Dagmar Rajagopal, Ryerson Polytechnic University; Bo Ruck, U.S. Military Academy; John Spitzer, State University of New York, Brockport; and H. D. Vinod, Fordham University.

I owe a great debt of gratitude to Professor Kenneth J. White and Steven A. Theobald for checking numerical calculations and for preparing the handbook: *Basic Econometrics: A Computer Handbook Using SHAZAM*, 3d ed., McGraw-Hill, New York, 1995. My wife Pushpa and my daughters Joan and Diane have been a constant source of inspiration and encouragement. Beyond a simple thank-you, I want them to know that I love them all very dearly.

On a personal note, after some 28 years of teaching at the City University of New York (CUNY), I have now joined the Department of Social Sciences at the U.S. Military Academy at West Point, New York. I am grateful to CUNY for providing me with my first job and to the Academy for offering me new challenges and opportunities.

Damodar N. Gujarati

BASIC ECONOMETRICS

此为试读,需要完整PDF请访问: www.ertongbook.com

CONTENTS

Preface	xxi
Introduction	1

Part 1 Single-Equation Regression Models

1	Th	e Nature of Regression Analysis	15
	1.1	Historical Origin of the Term "Regression"	15
	1.2		16
		Examples	16
	1.3	Statistical vs. Deterministic Relationships	19
	1.4	Regression vs. Causation	20
	1.5	Regression vs. Correlation	21
	1.6	Terminology and Notation	22
	1.7	The Nature and Sources of Data for Econometric	
		Analysis	23
		Types of Data	23
		The Sources of Data	24
		The Accuracy of Data	26
	1.8		27
		Exercises	28
		Appendix 1A	29
		1A.1 Sources of Economic Data	29
		1A.2 Sources of Financial Data	31
2	Tw	o-Variable Regression Analysis:	
	So	me Basic Ideas	32
	2.1	A Hypothetical Example	32
	2.2	The Concept of Population Regression Function (PRF)	36
	2.3	The Meaning of the Term "Linear"	36
		Linearity in the Variables	37
		Linearity in the Parameters	37
	2.4	Stochastic Specification of PRF	38

	2.5	The S	Significance of the Stochastic Disturbance Term	39	
	2.6	The S	Sample Regression Function (SRF)	41	
	2.7	Sumr	mary and Conclusions	45	
		Exerc	cises	45	
3	Two-Variable Regression Model:				
	The	Prob	olem of Estimation	52	
	3.1		Method of Ordinary Least Squares	52	
	3.2		Classical Linear Regression Model: The Assumptions	52	
	5.2		rlying the Method of Least Squares	59	
			w Realistic Are These Assumptions?	68	
	3.3		sion or Standard Errors of Least-Squares		
		Estin		69	
	3.4	Prope	erties of Least-Squares Estimators:		
			Gauss-Markov Theorem	72	
	3.5	The C	Coefficient of Determination r^2 : A Measure		
			oodness of Fit"	74	
	3.6	A Nu	merical Example	80	
	3.7	Illust	rative Examples	83	
		Cof	ffee Consumption in the United States, 1970–1980	83	
		Key	ynesian Consumption Function for the United		
			ites, 1980–1991	84	
	3.8		puter Output for the Coffee Demand Function	85	
	3.9		te on Monte Carlo Experiments	85	
	3.10		mary and Conclusions	86	
		Exerc		87	
			estions	87	
			oblems	89	
			ndix 3A	94	
			Derivation of Least-Squares Estimates	94	
		3A.2	Linearity and Unbiasedness Properties	0.4	
		24.2	of Least-Squares Estimators	94	
		3A.3	Variances and Standard Errors of Least-Squares	95	
		2 4 4	Estimators Covariance between $\hat{\beta}_1$ and $\hat{\beta}_2$	93 96	
		3A.4 3A.5		96	
		3A.6	Minimum-Variance Property of Least-Squares	90	
		JA.U	Estimators	97	
		3A.7	SAS Output of the Coffee Demand Function	1	
		51.7	(3.7.1)	99	
			(3.1.1)		
4	The	Norr	mality Assumption: Classical Normal		
			egression Model (CNLRM)	101	
	4.1		Probability Distribution of Disturbances u_i	101	
	4.2			101	
	4.3	The Normality Assumption 10 Properties of OLS Estimators under the Normality			
	т.5	-	nption	104	
	4.4		Method of Maximum Likelihood (ML)	107	
	4.5		ability Distributions Related to the	101	
			al Distribution: The t, Chi-square (χ^2) ,		
			Distributions	107	

	4.6	Summary and Conclusions	109
		Appendix 4A	110
		Maximum Likelihood Estimation of Two-Variable	
		Regression Model	110
		Maximum Likelihood Estimation of the	
		Consumption-Income Example	113
		Appendix 4A Exercises	113
5	Two	-Variable Regression: Interval Estimation	
	and	Hypothesis Testing	115
	5.1	Statistical Prerequisites	115
	5.2	Interval Estimation: Some Basic Ideas	116
	5.3	Confidence Intervals for Regression Coefficients β_1	
	0.0	and β_2	117
		Confidence Interval for β_2	117
		Confidence Interval for β_1	119
		Confidence Interval for β_1 and β_2 Simultaneously	120
	5.4	Confidence Interval for σ^2	120
	5.5	Hypothesis Testing: General Comments	121
	5.6	Hypothesis Testing: The Confidence-Interval Approach	122
		Two-Sided or Two-Tail Test	122
		One-Sided or One-Tail Test	124
	5.7	Hypothesis Testing: The Test-of-Significance Approach	124
		Testing the Significance of Regression Coefficients:	
		The <i>t</i> -Test	124
		Testing the Significance of σ^2 : The χ^2 Test	128
	5.8	Hypothesis Testing: Some Practical Aspects	129
		The Meaning of "Accepting" or "Rejecting"	
		a Hypothesis	129
		The "Zero" Null Hypothesis and the "2-t" Rule	
		of Thumb	129
		Forming the Null and Alternative Hypotheses	130
		Choosing α , the Level of Significance	131
		The Exact Level of Significance: The p Value	132
		Statistical Significance versus Practical Significance	133
		The Choice between Confidence-Interval and	
		Test-of-Significance Approaches to Hypothesis	
		Testing	134
	5.9	Regression Analysis and Analysis of Variance	134
	5.10	Application of Regression Analysis: The Problem	
		of Prediction	137
		Mean Prediction	137
		Individual Prediction	138
	5.11	Reporting the Results of Regression Analysis	140
	5.12	Evaluating the Results of Regression Analysis	140
		Normality Test	141
		Other Tests of Model Adequacy	144
	5.13	Summary and Conclusions	144
		Exercises	145
		Questions	145
		Problems	147

		Appendix 5A	152	
		5A.1 Derivation of Equation (5.3.2)	152	
		5A.2 Derivation of Equation (5.9.1)	152	
		5A.3 Derivations of Equations (5.10.2) and (5.10.6)	153	
		Variance of Mean Prediction	153	
		Variance of Individual Prediction	153	
6	Ex	tensions of the Two-Variable Linear		
	Re	gression Model	155	
	6.1		155	
	0.1	r^2 for Regression-through-Origin Model	155	
		An Illustrative Example: The Characteristic Line of	159	
		Portfolio Theory	159	
	6.2		161	
	0.2	A Numerical Example: The Relationship between	101	
		GPDI and GNP, United States, 1974–1983	163	
		A Word about Interpretation	164	
	6.3		165	
	6.4		165	
		An Illustrative Example: The Coffee Demand Function	100	
		Revisited	167	
	6.5	Semilog Models: Log-Lin and Lin-Log Models	169	
		How to Measure the Growth Rate: The Log-Lin Model	169	
		The Lin-Log Model	172	
	6.6		173	
		An Illustrative Example: The Phillips Curve for the		
		United Kingdom, 1950–1966	176	
	6.7	Summary of Functional Forms	176	
	6.8	A Note on the Nature of the Stochastic Error Term:		
		Additive versus Multiplicative Stochastic Error Term	178	
	6.9	Summary and Conclusions	179	
		Exercises	180	
		Questions	180	
		Problems	183	
		Appendix 6A	186	
		6A.1 Derivation of Least-Squares Estimators for		
		Regression through the Origin	186	
		6A.2 SAS Output of the Characteristic Line (6.1.12)	189	
		6A.3 SAS Output of the United Kingdom Phillips Curve	100	
		Regression (6.6.2)	190	
7	Multiple Regression Analysis: The Problem			
	of I	Estimation	191	
	7.1	The Three-Variable Model: Notation and Assumptions	192	
	7.2	Interpretation of Multiple Regression Equation	194	
	7.3	The Meaning of Partial Regression Coefficients	195	
	7.4 OLS and ML Estimation of the Partial Regression			
		Coefficients	197	
		OLS Estimators	197	
		Variances and Standard Errors of OLS Estimators	198	

	Pro	operties of OLS Estimators	199
	Ma	ximum Likelihood Estimators	201
7.5	The M	Multiple Coefficient of Determination R^2	
	and t	he Multiple Coefficient of Correlation R	201
7.6	Exam	pple 7.1: The Expectations-Augmented Phillips	
		e for the United States, 1970–1982	203
7.7	Simp	le Regression in the Context of Multiple	
		ession: Introduction to Specification Bias	204
7.8		d the Adjusted R^2	207
		mparing Two R^2 Values	209
		ample 7.2: Coffee Demand Function Revisited	210
		e "Game" of Maximizing \bar{R}^2	211
7.9		al Correlation Coefficients	211
	Ex	planation of Simple and Partial Correlation	
	100	efficients	211
	Int	erpretation of Simple and Partial Correlation	
		efficients	213
7.10	Exam	ple 7.3: The Cobb-Douglas Production Function:	
		on Functional Form	214
7.11	Polyn	nomial Regression Models	217
		ample 7.4: Estimating the Total Cost Function	218
		pirical Results	220
7.12		mary and Conclusions	221
	Exerc		221
	Qu	estions	221
	Pro	oblems	224
	Appe	ndix 7A	231
	7A.1	Derivation of OLS Estimators Given in	
		Equations (7.4.3) and (7.4.5)	231
	7A.2	Equality between a_1 of (7.3.5) and β_2 of (7.4.7)	232
		Derivation of Equation (7.4.19)	232
	7A.4		
		Regression Model	233
	7A.5	The Proof that $E(b_{12}) = \beta_2 + \beta_3 b_{32}$ (Equation	
		7.7.4)	234
	7A.6	SAS Output of the Expectations-Augmented	
		Phillips Curve (7.6.2)	236
	7A.7	SAS Output of the Cobb-Douglas Production	
		Function (7.10.4)	237
Mul	tiple	Regression Analysis: The Problem	
of Ir	ifere	nce	238
8.1		Jormality Assumption Once Again	238
8.2		uple 8.1: U.S. Personal Consumption and Personal	230
0.2			239
Disposal Income Relation, 1956–1970 8.3 Hypothesis Testing in Multiple Regression: General			239
8.3 Hypothesis Testing in Multiple Regression: General Comments			242
8.4		thesis Testing about Individual Partial Regression	242
Coefficients			242
8.5		ng the Overall Significance of the Sample	242
0.5		ession	244
	regre	-551011	244

8

		The Analysis of Variance Approach to Testing the	
		Overall Significance of an Observed Multiple	0.15
		Regression: The F Test	245
		An Important Relationship between R^2 and F	248
		The "Incremental," or "Marginal," Contribution of an	250
	58 S./	Explanatory Variable	250 254
	8.6	Testing the Equality of Two Regression Coefficients	
		Example 8.2: The Cubic Cost Function Revisited	255
	8.7	Restricted Least Squares: Testing Linear Equality	256
		Restrictions	256
		The <i>t</i> Test Approach	250
		The F Test Approach: Restricted Least Squares	251
		Example 8.3: The Cobb-Douglas Production Function	259
		for Taiwanese Agricultural Sector, 1958–1972	260
	0.0	General <i>F</i> Testing Comparing Two Regressions: Testing for Structural	200
	8.8	Stability of Regression Models	262
	00	Testing the Functional Form of Regression: Choosing	202
	8.9	between Linear and Log-Linear Regression Models	265
		Example 8.5: The Demand for Roses	266
	8.10	Prediction with Multiple Regression	267
	8.11	The Troika of Hypothesis Tests: The Likelihood Ratio	
	0.11	(LR), Wald (W), and Lagrange Multiplier (LM) Tests	268
	8.12	Summary and Conclusions	269
	0.12	The Road Ahead	269
		Exercises	270
		Ouestions	270
		Problems	273
		Appendix 8A	280
		Likelihood Ratio (LR) Test	280
9	The	Matrix Approach to Linear Regression	
7			282
	Mo		
	9.1	The k-Variable Linear Regression Model	282
	9.2	Assumptions of the Classical Linear Regression Model	204
		in Matrix Notation	284
	9.3	OLS Estimation	287
		An Illustration	289
		Variance-Covariance Matrix of $\hat{\beta}$	290
		Properties of OLS Vector $\hat{\boldsymbol{\beta}}$	291
	9.4	The Coefficient of Determination R^2 in Matrix Notation	292
	9.5	The Correlation Matrix	292
	9.6	Hypothesis Testing about Individual Regression	293
		Coefficients in Matrix Notation	293
	9.7	Testing the Overall Significance of Regression: Analysis	294
	0.0	of Variance in Matrix Notation	294
	9.8	Testing Linear Restrictions: General F Testing Using	295
	0.0	Matrix Notation	293
	9.9	Prediction Using Multiple Regression: Matrix	296
		Formulation	290
		Mean Prediction	290