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List of definitions and notations

Set theory

| M| is the cardinality of a set M (if G is a finite group, then |G| is called its order).

x € M (x € M) means that x is (is not) an elementofaset M. N C M (N € M)
means that N is (is not) a subset of the set M ; moreover, if M # N C M we write
NcM.

@ is the empty set.

N is called a nontrivial subset of M,if N # @and N C M. If N C M we say that
N is a proper subset of M.

M N N is the intersection and M U N is the union of sets M and N. If M, N are sets,
then N — M = {x € N | x € M} is the difference of N and M.

Z is the set (ring) of integers: Z = {0, £1,£2,...}.
N is the set of all natural numbers.

@Q is the set (field) of all rational numbers.

R is the set (field) of all real numbers.

C is the set (field) of all complex numbers.

Number theory and general algebra

p is always a prime number.

7 is a set of primes; 7’ is the set of all primes not contained in 7.
m,n, k, r,s are, as a rule, natural numbers.

7 (m) is the set of prime divisors of m; then m is a 7-number.

np is the p-part of n, ny is the w-part of n.

(m,n) is the greatest common divisor of m and n.

m | n should be read as: m divides n.

m t n should be read as: m does not divide n.



List of definitions and notations X

GF(p™) is the finite field containing p” elements.
F* is the multiplicative group of a field FF.
£(G) is the lattice of all subgroups of a group G.

n = pi" .. p,‘Z" is the standard prime decomposition of 7, then A(n) = Zf-‘zl Q.

Groups

We consider only finite groups which are denoted, with a pair exceptions, by upper
case Latin letters.

If G is a group, then 7(G) = 7 (|G|).

G is a p-group if |G| is a power of p; G is a w-group if 7(G) C .
G is, as arule, a finite p-group.

H < G means that H is a subgroup of G.

H < G means that H < G and H # G (in that case H is called a proper subgroup
of G). {1} denotes the group containing only one element.

H is a nontrivial subgroup of G if {1} < H < G.

H is a maximal subgroup of G if H < G and it follows from H < M < G that
H=M.

H < G means that H is a normal subgroup of G; moreover, if, in addition, H # G
we write H <G and say that H is a proper normal subgroup of G. Expressions ‘normal
subgroup of G’ and ‘G-invariant subgroup’ are synonyms.

H < G is called a nontrivial normal subgroup of G provided H > {1}.

H is a minimal normal subgroup of G if (a) H < G; (b) H > {1}; (¢) N < G and
N < H implies N = {1}. Thus, the group {1} has no minimal normal subgroup.

G is simple if it is a minimal normal subgroup of G (so |G| > 1).
H is a maximal normal subgroup of G if H < G and G/H is simple.

The subgroup generated by all minimal normal subgroups of G is called the socle of
G and denoted by Sc(G). We put, by definition, Sc({1}) = {1}.

Ng(M) = {x € G | x 'Mx = M} is the normalizer of a subset M in G.
Cg(x) is the centralizer of anelement x in G : Cg(x) ={z € G | zx = xz}.
C(M) = (\yem Cc(x) is the centralizer of a subset M in G.

If A< Band A,B < G,thenCg(B/A) = H, where H/A = Cg/4(B/A).



X Groups of prime power order

A wr B is the wreath product of the ‘passive’ group A and the transitive permutation
group B (in what follows we assume that B is regular); B is called the active factor of
the wreath product). Then the order of that group is |A|'8l|B|.

Aut(G) is the group of automorphisms of G (the automorphism group of G).
Inn(G) is the group of all inner automorphisms of G.

Out(G) = Aut(G)/Inn(G), the outer automorphism group of G.

Ifa,b € G, thena? = b~ lab.

Anelement x € G inverts a subgroup H < G if h¥* = h™! forallh € H.

If M C G, then (M) = (x | x € M) is the subgroup of G generated by M.

M*=x""Mx={y*|yeM}forxeGand M C G.

1 1

[x,y] = x"1y~lxy = x~1x7 is the commutator of elements x, y of G. f M,N € G
then [M,N] = ([x,y] | x € M,y € N) is a subgroup of G.

o(x) is the order of an element x of G.
Anelement x € G is a w-element if 7(0(x)) C 7.

G is a w-group, if 7(G) C m. Obviously, G is a w-group if and only if all of its
elements are 7 -elements.

G’ is the subgroup generated by all commutators [x, y], x,y € G (i.e., G' = [G, G)),
G® =[G'.G' = G" = (G'Y,GP® = [G".G"] = (G”) and so on. G’ is called
the commutator (or derived) subgroup of G.

Z(G) = (\yeg Cc(x) is the center of G.

Z;(G) is the i -th member of the upper central series of G; in particular, Zo(G) = {1},
Z1(G) = Z(G).

K;(G) is the i -th member of the lower central series of G; in particular, K5 (G) = G'.
We have K; (G) =[G, ..., G] (i > 1 times). We setK;(G) = G.

If G is nonabelian, then n(G)/K3(G) = Z(G/K3(G)).

M(G) = (x € G | Cg(x) = Cg(x?) is the Mann subgroup of a p-group G.
Sylp(G) is the set of p-Sylow subgroups of an arbitrary finite group G.

Sy is the symmetric group of degree n.

Ay, is the alternating group of degree n

X pn is a Sylow p-subgroup of Spn.

GL(n, F) is the set of all nonsingular n x n matrices with entries in a field F, the
n-dimensional general linear group over F, SL(n, F) = {A € GL(n, F) | det(A) =
1 € F}, the n-dimensional special linear group over F.
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If H < G, then HG = (\yeg X ' Hx is the core of the subgroup H in G and
HY = Ny<yag N is the normal closure or normal hull of H in G. Obviously,
Hg < G.

If G is a p-group, then p?® = |G : Cg(x)|; b(x) is said to be the breadth of x € G,
where G is a p-group; b(G) = max {b(x) | x € G} is the breadth of G.

®(G) is the Frattini subgroup of G (= the intersection of all maximal subgroups of G),
({1} = {1}, p9@ =G : 2(G)]-

Ii={H<G|®G)<HI|G:H|l=p'}i=1,..., d(G), where G > {1}.
If H < G, then I'1 (H) is the set of all maximal subgroups of H.

exp(G) is the exponent of G (the least common multiple of the orders of elements of
G). If G is a p-group, then exp(G) = max {o(x) | x € G}.

k(G) is the number of conjugacy classes of G (= G-classes), the class number of G.
K is the G-class containing an element x (sometimes we also write cc/g (x)).

C,,, is the cyclic group of order m.

G™ is the direct product of m copies of a group G.

A x B is the direct product of groups 4 and B.

A * B is a central product of groups 4 and B, i.e., A * B = AB with [4, B] = {1}.

Epm = CZ‘ is the elementary abelian group of order p™. G is an elementary abelian
p-group if and only if it is a p-group > {1} and G coincides with its socle. Next, {1}
is elementary abelian for each prime p.

A group G is said to be homocyclic if it is a direct product of isomorphic cyclic sub-
groups (obviously, elementary abelian p-groups are homocyclic).

ES(m, p) is an extraspecial group of order p! 2™ (a p-group G is said to be extraspe-
cial if G’ = ®(G) = Z(G) is of order p). Note that for each m € N, there are exactly
two nonisomorphic extraspecial groups of order p?™+1.

S(p?) is a nonabelian group of order p3 and exponent p > 2.

A special p-group is a nonabelian p-group G such that G’ = ®(G) = Z(G) is
elementary abelian. Direct products of extraspecial p-groups are special.

D2,y is the dihedral group of order 2m, m > 2. Some authors consider E,> as the
dihedral group Dy4.

Qom is the generalized quaternion group of order 2 > 23
SDym is the semidihedral group of order 2™ > 24

M,m is a nonabelian p-group containing exactly p cyclic subgroups of index p.
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cl(G) is the nilpotence class of a p-group G.

dI(G) is the derived length of a p-group G.

CL(G) is the set of all G-classes.

A p-group of maximal class is a nonabelian group G of order p™ with cl(G) = m—1.

Qn(G) = (x € G | 0o(x) < p™), Q4(G) = (x € G | o(x) = p™) and B (G) =
(x?" | x € G).

A p-group is absolutely regular if |G/81(G)| < pP.
A p-group is thin if it is either absolutely regular or of maximal class.
G = A- B is a semidirect product with kernel B and complement A.

A group G is an extension of N < G by a group H if G/N = H. A group G splits
over Nif G = H-N with H <G and H N N = {1} (in that case, G is a semidirect
product of H and N with kernel N).

H" = H — {ey }, where ey is the identity element of the group H. If M C G, then
M* =M — {eg}.

An automorphism « of G is regular (= fixed-point-free) if it induces a regular permu-
tation on G¥ (a permutation is said to be regular if it has no fixed points).

An involution is an element of order 2 in a group.
A section of a group G is an epimorphic image of some subgroup of G.

If F = GF(p™"), then we write GL(m, p"),SL(m, p"),... instead of GL(m, F),

¢n(G) is the number of cyclic subgroups of order p” in a p-group G.
$n(G) is the number of subgroups of order p” in a p-group G.
e, (G) is the number of subgroups of order p” and exponent p in G.

Ap-group is a p-group G all of whose subgroups of index p” are abelian but G con-
tains a nonabelian subgroup of index p"~!. In particular, /;-group is a minimal
nonabelian p-group for some p.

ap(G) is the number of A,-subgroups in a p-group G.

Characters and representations

Irr(G) is the set of all irreducible characters of G over C.
A character of degree 1 is said to be linear.

Lin(G) is the set of all linear characters of G (obviously, Lin(G) C Irr(G)).
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Irr; (G) = Irr(G) — Lin(G) is the set of all nonlinear irreducible characters of G;
n(G) = |Irr (G)].

x(1) is the degree of a character y of G,
X H is the restriction of a character y of G to H < G.
)(G is the character of G induced from the character y of some subgroup of G.

X is a character of G defined as follows: y(x) = x(x) (here w is the complex conju-
gate of w € C).

Irr(y) is the set of irreducible constituents of a character y of G.

If y is a character of G, then ker(y) = {x € G | y(x) = x(1)} is the kernel of a
character y.

Z(x) ={x € G | |x(x)] = x(1)} is the quasikernel of y.

If N QG,thenlrr(G | N) = {y € Irr(G) | N £ ker(y)}.

(X, 7) = |G|71 Y e x(x)T(x™1) is the inner product of characters y and 7 of G.
Ig(¢) = (x € G | ¢* = ¢) is the inertia subgroup of ¢ € Irr(H) in G, where H <G.
1 is the principal character of G (1g(x) = 1 for all x € G).

M(G) is the Schur multiplier of G.

cd(G) = {x(1) | x € Irr(G)}.

mc(G) = k(G)/|G| is the measure of commutativity of G.

T(G) = Xyeim(a) 1(D. (G) = T(G)/IG].



Preface

This is the second part of the book. Sections 48-57, 60, 61, 66, 67, 70, 71, 73-75, 77—
87, 89-92 and Appendix 19 are written by the second author, all other sections — by
the first author. This volume contains a number of very strong results on 2-groups due
to the second author. All exercises and about all problems are due to the first author.
All material of this part is appeared in the book form at the first time.

Some outstanding problems of p-group theory are solved in this volume:

(i) classification of 2-groups with exactly three involutions,
(ii) classification of 2-groups containing exactly one nonmetacyclic maximal sub-
group,
(iii) classification of 2-groups G containing an involution ¢ such that Cg(t) =
(t) x @, where Q contains only one involution,

(iv) classification of 2-groups all of whose minimal nonabelian subgroups have the
same order 8,

(v) classification of 2-groups of rank 3 all of whose maximal subgroups are of
rank 2,

(vi) classification of 2-groups containing selfcentralizing noncyclic abelian sub-
groups of order 8, and so on.

There are, in this part, a number of new proofs of known important results:
(a) Blackburn’s classification of minimal nonmetacyclic groups (we presented, in
Sec. 66 and 69, two different proofs),

(b) classification of p-groups all of whose subgroups of index p? are abelian,

(c) Ward’s theorem on quaternion-free 2-groups (we presented two different
proofs),

(d) classification of p-groups with cyclic subgroup of index p?,

(e) Kazarin’s classification of p-groups all of whose cyclic subgroups of order
> p are normal,

(f) Iwasawa’s classification of modular p-groups, and so on.
Some results proved in this part have no analogs in existing literature:

(a) classification of 2-groups all of whose minimal nonabelian subgroups are iso-
morphic and have order 16,

(b) study the 2-groups with at most 1 + p + p? minimal nonabelian subgroups,
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(c) classification of 2-groups all of whose nonabelian two-generator subgroups are
of maximal class,

(d) classification of 2-groups G with [Q22(G)| < 2% and |23(G)| = ot

(e) classification of p-groups G with 2(G) or 23(G) is metacyclic (extraspe-
cial),

(f) classification of '2—gr0ups all of whose nonabelian subgroups are generated by
involutions, and so on.

As the previous part, this one contains a great number of open problems posed, as a
rule, by the first author; some of these problems are solved and solutions are presented
below.

The first author is indebted to Avinoam Mann for numerous useful discussions and
help. The correspondence with Martin Isaacs allowed us to acquaint the reader with a
number of his old and new important results. Moreover, Mann and Isaacs familiarized
us with a number of their papers prior of publication. Noboru Ito read a number
of sections and all appendices and made numerous useful remarks and suggestions.
The help of Lev Kazarin was very important and allowed us to improve a number
of places of the book, especially, in §§46 and 63; he also acquainted the first author
with a fragment of his PhD thesis (see §§65, 71). The first author also indebted to
Gregory Freiman, Marcel Herzog (both at Tel-Aviv University), Moshe Roitman and
Izu Vaisman (both at University of Haifa) for help and support.

The publication of the book gives us great pleasure. We are grateful to the publish-
ing house of Walter de Gruyter and all who promoted the publication, among of them
Prof. M. Hazewinkel, Dr. R. Plato and K. Dimler, for their support and competent
handling of the project.
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§46

Degrees of irreducible characters
of Suzuki p-groups

The results of this section are due to I. A. Sagirov [Sagl, Sag2]. Throughout this
section we use the following notation: F = GF(p™), m > 1; 6 is an automorphism
of IF of order k for some divisor k > 1 of m (recall that the group of automorphisms
of IF is cyclic of order m whose generator is a + a? foralla € F); n = %(< m).
Let, for example, 6 : a — a?" (a € F). The set of fixed points of 6 is a subfield
Fg of IF satisfying a?" = 1 so containing p" elements (for example, if k = m, then
Fg = [y, the prime subfield of ). Let F* be the (cyclic) multiplicative group of
IF. Next, let Irr; (G) denote the set of all nonlinear irreducible characters of G. Put
cd(G) = {x(1) | x € Irr(G)}. Next, Irr;)(G) denotes the number of characters of
degree ¢ in Irr(G).

Definition. The Suzuki p-group A, (m, 6) is the set F x ¥ with multiplication defined
as follows: (a,b)(c.d) = (a + c.b +d + ab(c)).

Let G = A,(m,0); then |G| = |F|? = p?™. It follows from the definition that
elements (a,b) and (c,d) commute if and only if cO(a) = ab(c), i.e., eithera = 0
or O(c/a) = c¢/a so ¢ = au for some u € Fy. The identity element of G is (0,0)
and (a,b)™! = (—a,—b + af(a)). Since so defined multiplication is associative, G
indeed is a group. If (¢,d) € Z(G) and (a,b) € G, then ¢ = au for u € Fyg and all
a € F which implies ¢ = 0 since k > 1. Thus, Z(G) = {(0,d) | d € F}. We have
Z(G) = Epm. It is easy to prove, by induction that (a,b)" = (na.nb + (3) - ab(a)).
Taking n = p, we get (a,b)? € Z(G); moreover, if p > 2, then exp(G) = p.

1°. Throughout this subsection p = 2 and G = A(m,0) = Az(m,0). Our aim is
to find cd(G) and the number of irreducible characters of every degree s € cd(G).

Theorem 46.1 ([Sagl]). Suppose that p = 2, G = A(m, 0), where m > 1 and 0 is an
automorphism of the field F = GF(2™) of order k > 1 and n = % Then one of the
Jfollowing holds:

(a) Ifk is odd, then cd(G) = {1,25(m=m,

(b) Ifk =2, then cd(G) = {1,2™/2} = {1,2"}.

(c) Ifk > 2 is even, then cd(G) = {1,2™/2, 20"/ D=1} Itr yn/2)(G)| = E 02"

. 27 F1
2/71_1 2_”
and |Irr(a0m/2)-ny(G)| = (2::—_‘_)1
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If x € FF then, since € is an automorphism of IF of order k > 1, then 8(x) = x2
for some nonnegative s independent of x and 6k (x) = x, x € F. On the other hand,
6% (x) = x2" 50 x2™ = x, and this is true foreach x € F. If x is a primitive element
of IF, it follows that 2" — 1 divides 25k _ 1 s0 m(= nk) divides sk (see Lemma
46.5 below) hence n divides s, and we conclude that s = nt, where (,k) = 1 since
0(f) = k. Thus, f(x) = x2"". Therefore, the number of automorphisms of F of
order k equals ¢(k), where ¢(x) is the Euler’s totient function. Then {a € F | 8(a) =
a} = [y is the set of elements a € F such that a?"" = a and the cardinality of that
set is 2". As we have shown, if a # 0, then Cg((a,b)) = {(az,u) | z € Fg,u € F}
so |Cg((a,b))| = 2™*". In particular, the size of every noncentral G-class equals
2" _ om—n_{fq € F—{0}, then (a,b)? = (0,af(a)) # (0,0) so Z(G) = Q(G).

S
Therefore, since exp(G) = 4, we get 21(G) = U1(G) = ®(G).

Lemma 46.2. |G’| > 2™m~",

Indeed, |G| is at least the size of a noncentral G-class. However, all noncentral
G -classes have the same size 27" . From the last assertion follows

Lemma 46.3. k(G) = Z(G)| + [GIEQN — om+n | om _on,

An element A € F is said to be primitive if the (cyclic) multiplicative group F* =

(A).

Lemma 46.4. A mapping ¢, ((a,b)) = (Aa,A0(A)b) is an automorphism of G of
order o() for every element A € (F*).

Proof. Set A6(A) = 1. Then ¢;((a,b)) = (Aa, ub), @3 (¢, d)) = (e, ud),
oa((@,b)(c,d)) = (@ + ¢,b +d +ab(c)) = (Ma + ). u(b + d + ab(c)).
On the other hand,
0a((@b)ga((c,d)) = (Aa, ub)(he, pd) = (Ma + ¢), ub + pd + Lad(Ac))
= (M@ + ¢), u(b + d + ab(c))).

It follows that ¢, is an endomorphism of G. Next, (Aa, ub) = ¢, ((a,b)) = (0,0) if
and only if (a,b) = (0,0) so ¢, is an automorphism of G since G is finite.

Set o(A) = d. Then ¢¢ ((a,b)) = (A%a, (AB(1))?b) = (a.b) and, if a # 0, then
@3 ((a,b)) # (a,b) forr € {1,2,..., d — 1}. It follows that o(py) =d = 0(A). o

Lemma 46.5. Givena > 1, m,n, we have (a™ — 1,a" — 1) = a™n) — 1.

Proof. Set (m.n) =8 andd = (a™ — 1,a™ — 1). Then there exist u, v € N such that
8 = mu — nv. Clearly, a% — 1 divides d. On the other hand, d divides ™% — 1 and
a"’ — 1. Hence d divides the number a”* — 1 — (a"? — 1) = @™ (a™* ™" — 1) =
a™ (a® —1) so d divides a® —1 since (d,a) = 1, and we conclude thatd = a®—1. o



