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Preface

Thermodynamics plays an important role in numerous industries, both in the design of separation equipment
and processes as well as for product design and optimizing formulations. Complex polar and associating
molecules are present in many applications, for which different types of phase equilibria and other
thermodynamic properties need to be known over wide ranges of temperature and pressure. Several
applications also include electrolytes, polymers or biomolecules. To some extent, traditional activity
coefficient models are being phased out, possibly with the exception of UNIFAC, due to its predictive
character, as advances in computers and statistical mechanics favor use of equations of state. However, some of
these ‘classical’ models continue to find applications, especially in the chemical, polymer and pharmaceutical
industries. On the other hand, while traditional cubic equations of state are often not adequate for complex
phase equilibria, over the past 20-30 years advanced thermodynamic models, especially equations of state,
have been developed.

The purpose of this work is to present and discuss in depth both ‘classical’ and novel thermodynamic models
which have found or can potentially be used for industrial applications. Following the first introductory part of
two short chapters on the fundamentals of thermodynamics and intermolecular forces, the second part of the
book (Chapters 3—6) presents the ‘classical’ models, such as cubic equations of state, activity coefficient
models and their combination in the so-called EoS/G* mixing rules. The advantages, major applications and
reliability are discussed as well as the limitations and points of caution when these models are used for design
purposes, typically within a commercial simulation package. Applications in the oil and gas and chemical
sectors are emphasized but models suitable for polymers are also presented in Chapters 4-6.

The third part of the book (Chapters 7—14) presents several of the advanced models in the form of association
equations of state which have been developed since the early 1990s and are suitable for industrial applications.
While many of the principles and applications are common to a large family of these models, we have focused
on two of the models (the CPA and PC-SAFT equations of state), largely due to their range of applicability and
our familiarity with them. Extensive parameter tables for the two models are available in the two appendices on
the companion website at www.wiley.com/go/Kontogeorgis. The final part of the book (Chapters 15-20)
illustrates applications of thermodynamics in environmental science and colloid and surface chemistry and
discusses models for mixtures containing electrolytes. Finally, brief introductions about the thermodynamic
tools available for mixtures with biomolecules as well as the possibility of using quantum chemistry in
engineering thermodynamics conclude the book.

The book is based on our extensive experience of working with thermodynamic models, especially the
association equations of state, and in close collaboration with industry in the petroleum, energy, chemical and
polymer sectors. While we feel that we have included several of the exciting developments in thermodynamic
models with an industrial flavor, it has not been possible to include them all. We would like, therefore, to
apologize in advance to colleagues and researchers worldwide whose contributions may not have been
included or adequately discussed for reasons of economy. However, we are looking forward to receiving
comments and suggestions which can lead to improvements in the future.

The book is intended both for engineers wishing to use these models in industrial applications (many of them
already available in commercial simulators, as stand-alone or in CAPE-Open compliant format) and for
students, researchers and academics in the field of applied thermodynamics. The contents could also be used in



Preface  xviii

graduate courses on applied chemical engineering thermodynamics, provided that a course on the funda-
mentals of applied thermodynamics has been previously followed. For this reason, problems are provided on
the companion website at www.wiley.com/go/Kontogeorgis. Answers to selected problems are available,
while a full solution manual is available from the authors.

Georgios M. Kontogeorgis
Copenhagen, Denmark

Georgios K. Folas
Amsterdam, The Netherlands
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AAD %

AM
AMP
ATPS
BCF
BR
BTEX
CCC
CDI
CK-SAFT
CMC
Comb-FV
COSMO
CPA
CPP
CS
CSP
CTAB
DBE
DDT
DEA
DEG
DFT
DH
DiPE
DIPPR
DLVO
DME
DPE
ECR
EoS
EPA
EPE
ESD
EU
FCC

List of Abbreviations

percentage average absolute deviation:

AAD % = L§A35<M) -100
NP =1 Xexp,i
for a property x
arithmetic mean rule (for the cross co-volume parameter, b;,)
2-amino-2-methyl-1-propanol
aqueous two-phase systems
bioconcentration factor
butadiene rubber (polybutadiene)
benzene—toluene—ethylbenzene—xylene
critical coagulation concentration
chronic daily intake
Chen—Kreglewski SAFT
critical micelle concentration
combinatorial free volume (effect, term, contributions)
conductor-like screening model
cubic-plus-association
critical packing parameter
Carnahan—Starling
corresponding states principle
hexadecyl trimethylammonium bromide
dibutyl ether
dichlorodiphenyltrichloroethane
diethanolamine
diethylene glycol
density functional theory
Debye—Hiickel
diisopropyl ether
Design Institute for Physical Property (database)
Derjaguin—Landau—Verwey—Overbeek (theory)
dimethyl ether
dipropyl ether
Elliott’s combining rule
Equation of state
Environmental Protection Agency
ethyl propyl ether
Elliott—Suresh—Donohue (EoS)
European Union
Face-centered cubic structure (close packed, Z=12)



FH
FOG
FV

GC
GCA
GCVM
GERG
GLC
GLE
GM
HB
HCB
HF
HIC
HLB
HSP
HV
IEC
LALS
LC
LCST
LCVM
LGT
LJ
LLE
LR
mCR-1
MC-SRK
MDEA
MEA
MEG
MEK
MHV1
MHV2
MM
MO
MSA

NLF-HB
NP
NRHB
NRTL
PAHs
PBA
PBD
PBMA
PCBs

List of Abbreviations

Flory-Huggins

first-order groups

Free volume

group contribution (methods, principle)
group contribution plus association

group contribution of Vidal and Michelsen mixing rules
Group Européen de Recherche Gaziere
gas—liquid chromatography

gas-liquid equilibria

geometric mean rule (for the cross-energy parameter, a;,)
hydrogen bonds/bonding
hexachlorobenzene

Hartree—Fock

hydrophobic interaction chromatography
hydrophilic-lipophilic balance

Hansen solubility parameters
Huron—Vidal mixing rule

ion-exchange chromatography

low-angle light scattering

local composition (models, principle, etc.)
lower critical solution temperature

linear combination of Vidal and Michelsen mixing rules
linear gradient theory

Lennard-Jones

liquid-liquid equilibria

Lewis—Randall; long range

modified CR-1 combining rule (for the CPA EoS), equation (9.10)
Mathias—Copeman SRK

methyl diethanolamine
monoethanolamine

(mono)ethylene glycol

methyl ethyl ketone

modified Huron—Vidal first order
modified Huron—Vidal second order
McMillan-Mayer

molecular orbital

mean spherical approximation

molecular weight

lattice—fluid hydrogen bonding (EoS)
number of experimental points
non-random hydrogen bonding (EoS)
non-random two liquid

polynuclear aromatic hydrocarbons
poly(butyl acrylate)

polybutadiene

poly(butyl methacrylate)

polychlorinated biphenyls

XXiv



xxv List of Abbreviations

PC-SAFT  perturbed-chain SAFT

PDH Pitzer—Debye—Hiickel

PDMS poly(dimethy] siloxane)

PEA poly(ethyl acrylate)

PEG (poly)ethylene glycol

PIB polyisobutylene

PIPMA poly(isopropyl methacrylate)

PM primitive model

PMA poly(methyl acrylate)

PMMA poly(methyl methacrylate)

PP polypropylene

PPA poly(propyl acrylate)

PR Peng—Robinson

PS polystyrene

PSRK predictive Soave—Redlich—-Kwong
PVAc poly(vinyl acetate)

PVAL poly(vinyl alcohol)

PVC poly(vinyl chloride)

PVT pressure, volume, temperature

PZ piperazine

QC quantum chemistry

QM quantum mechanics

QSAR quantitative structure—activity relationships
RDF radial distribution function

RK Redlich-Kwong

RP-HPLC  reversed-phase high-pressure liquid chromatography
RPM restrictive primitive model

RST regular solution theory

SAFT statistical associating fluid theory
SCFE supercritical fluid extraction

SDS sodium dodecyl sulfate

SGE solid—gas equilibria

SL Sanchez—Lacombe

SOG second-order groups

SLE solid-liquid equilibria

SR short range

SRK Soave—Redlich—-Kwong (EoS)
SvC second virial coefficients

SWP Sako—Wu—Prausnitz (EoS)

TEG triethylene glycol

THF tetrahydrofurane

UCST upper critical solution temperature
UMR-PR  universal mixing rule (with the PR EoS)
UNIFAC universal quasi-chemical functional group activity coefficient
UNIQUAC universal quasi-chemical

vdW van der Waals (EoS)

vdW1f vdW one-fluid (mixing rules)



VLLE
VOR
VR
VTPR
WHO
WS
WWF
AP%

Ay

Ap%o

vapor-liquid equilibria
vapor-liquid-liquid equilibria

volatile organic compound

variable range

volume-translated Peng—Robinson (EoS)
World Health Organization
‘Wong—Sandler

World Wide Fund for Nature

average absolute percentage error:

AP% = Lngs(M) .100
NP i=1 exp,i

in bubble point pressure P of component i

average absolute percentage deviation:

1 NP
ay= NP ; ABS (nyP,i_)’calc,i)

in the vapor phase mole fraction of component i
average absolute percentage deviation:

Ap%:iﬁliABS Pexpi”Pealei | 100
NP Pexp,i

in the liquid density of component i

List of Abbreviations xxvi
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Amics Amik,1»
Amk 25
Amk 3
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List of Symbols

energy term in the SRK term (bar 1>/mol?) or activity or particle radius
surfactant head area
non-randomness parameter of molecules of type i around a molecule of type j

UNIFAC temperature-dependent parameters, K

surface area or Helmholtz energy or Hamaker constant

effective Hamaker constant

site A in molecule i

Hamaker constant of particle/surface i—i

parameter in Langmuir constant, K/bar

specific surface area, typically in m?%/g

area occupied by a gas molecule

reduced Helmholtz energy

parameter in the energy term of CPA (bar L?/mol?) or area of the head of a surfactant molecule
parameters in GERG model for water

Hamaker constant between particles (or surfaces) 1 and 3 in medium 2
co-volume parameter (1/mol) of cubic equations of state

second virial coefficient

site B in molecule j

parameter in Langmuir constant, K

molar concentration (often in mol/l or mol/m®) or concentration (in general) or the London
coefficient

parameter in the energy term of CPA

Langmuir constant for component i in cavity m

density (eq. 4.29) or temperature-dependent diameter

Diffusion coefficient or dielectric constant

modulus of Elasticity

fugacity, bar

fugacity, bar

Force

Gibbs energy

excess Gibbs energy

Huron-Vidal energy parameter, characteristic of the j—i interaction, K
radial distribution function

Planck’s constant, 6.626 x 107>*J's

enthalpy

interparticle or interface distance or (H;) Henry’s law constant

first ionization potential, J or ionic strength
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List of Symbols  xxviii

Boltzmann’s constant, J/K

Distribution factor e.g. Table 1.3

chemical equilibrium constant

binary interaction parameter (in equations of state)
octanol-water partition coefficient

chemical equilibrium constant at the reference temperature
parameter in the Hansen-Beerbower—Skaarup equation (eq. 18.8) or distance between charges
in a molecule (eq. 2.2a or 2.2b)

length of a surfactant molecule

segment number or molality

molecular weight (molar mass)

Avogadro’s number = 6.0225 x 10> mol/mol

aggregation (or aggregate) number

refractive index

true number of moles

apparent number of moles

pressure, bar

saturated vapor pressure

charge

quadrupole moment, C m?

surface area parameter for group k

van der Waals surface area

gas constant, bar I/mol/K or molecular radius

radial distance from the center of the cavity, A or intermolecular distance
the radius of cage i, A

volume parameter for group &

Harkins spreading coefficient or entropy

temperature, K

critical temperature, K

melting temperature of the component i, K

reduced temperature

reference temperature, K

arbitrary temperature for linear UNIFAC (in the temperature dependency of the
energy parameters), see Table 5.7

composition variable or internal energy

(van der Waals) potential energy

reduced volume

hard-core volume

volume

critical volume

free volume

gas volume at STP conditions (= 22 414 cm*/mol)

partial molar volume

molar volume (L mol‘l) or maximum volume occupied by a gas (in adsorption in a solid)
molar volume of ice, I mol™"

van der Waals volume

cell potential function, J



xxix  List of Symbols

X monomer fraction

Xa, fraction of A-sites of molecule i that are not bonded

b liquid mole fraction of component i

y reduced density, eq. 2.11 or 9.12

¥i vapor mole fraction of component i

z compressibility factor or co-ordination number

Z; ionic valence

ACp; heat capacity change of the component i at the melting temperature, J/mol/K

AG Gibbs free energy change (also of micellization)

AH enthalpy change (also of micellization)

AREEL enthalpy differences between the empty hydrate lattice and liquid water, J/mol

AH ¥ heat of fusion of the component i at the melting temperature, J/mol

Al chemical potential difference between the empty hydrate and pure liquid water, J/mol
AS entropy change (also of micellization)

AVER-Lo molar volume differences between the empty hydrate lattice and liquid water, J/mol

Greek letters

ap electronic polarizability

a polarizability or Kamlet acid parameter or distance of closest approach (Chapter 15)

o reduced energy (= 3z7), €q. (3.16) & Table 6.3
Kamlet base parameter

BB association volume parameter between site A in molecule 7 and site B in molecule j
(dimensionless) [in CPA]

y mole-based activity coefficient or surface or interfacial tension

¥ combinatorial part of activity coefficient for the component i

Vi residual part of activity coefficient for the component i

y> infinite dilution coefficient

I'(r) potential energy—distance function

Iy activity coefficient of group k at mixture composition or adsorption of compound (k)

T activity coefficient of group k at a group composition of pure component i

| maximum adsorption (often in mol/g)

6 solubility parameter, (J/cm>)"

A association strength, 1/mol

€ dispersion energy parameter, association energy, J

€0 permittivity of vacuum (free space), 8.854 x 10~ '2C?/J/m

& dielectric constant (dimensionless)

B association energy parameter between site A in molecule i and site B in molecule j, bar I/mol

partial volume fraction or zeta potential

the reduced fluid density of CPA or volume fraction of PC-SAFT

contact angle or surface area fraction

surface area fraction for component 7 in the mixture

occupancy of cavity m by component i

association volume of PC-SAFT or Debye screening length, eq. 15.25
dipole moment in Debye or (u;) chemical potential

main electronic absorption frequency in the UV region (about 3 x 10'>Hz)
number of cavities of type i
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List of Symbols

number of groups of type k in molecule i
surface pressure (= y,,—7)

electrical potential difference, eq. 19.35

surface potential

molar density, mol/]

segment diameter, A

Boltzmann factor (in local composition models), eq. (5.1)
(volume/segment) fraction

fugacity coefficient of component i in a mixture
acentric factor

Flory-Huggins (interaction) parameter
weight-based activity coefficient

infinite dilution weight-based activity coefficient

Superscripts and subscripts

AB
A;B;
A,B,C,D
A

AB
Adh, A
attr
assoc

b

c or crit
C

chem
cal

Coh
comb
comb-fv
d or disp
DP

DH

E

EH

eq

excl
exp

fv, FV
[ fus
FH

g or gas
H

h or hb, HB
he

site A—site B

site A in molecule i with site B in molecule j
site indicators

anion or attractive
acid-base interactions
adhesion

attractive

association

boiling point/temperature
critical

cation or combinational
chemical

calculated value
cohesion

combinatorial
combinatorial free volume
dispersion

data points
Debye-Hiickel

excess

empty hydrate
equilibrium

excluded

experimental value

free volume

fusion

Flory-Huggins

gas

hydrate

hydrogen bonding

hard chain
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