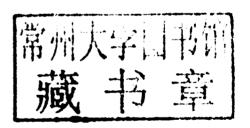


THERMODYNAMIC MODELS FOR INDUSTRIAL APPLICATIONS

FROM CLASSICAL AND ADVANCED MIXING RULES TO ASSOCIATION THEORIES

Thermodynamic Models for Industrial Applications


From Classical and Advanced Mixing Rules to Association Theories

GEORGIOS M. KONTOGEORGIS

Technical University of Denmark, Lyngby, Denmark

GEORGIOS K. FOLAS

Shell Global Solutions, The Netherlands

This edition first published 2010 © 2010 John Wiley & Sons Ltd

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of fitness for a particular purpose. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for every situation. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the publisher nor the author shall be liable for any damages arising herefrom.

Library of Congress Cataloging-in-Publication Data

Kontogeorgis, Georgios M.

Thermodynamic models for industrial applications: from classical and advanced mixing rules to association theories / Georgios M. Kontogeorgis, Georgios K. Folas.

p. cm.

Includes bibliographical references and index.

ISBN 978-0-470-69726-9 (cloth)

1. Thermodynamics-Industrial applications. 2. Chemical engineering. I. Kontogeorgis, Georgios M. II. Folas, Georgios K. III. Title.

TP155.2.T45K66 2010 660'.2969-dc22

2009028762

A catalogue record for this book is available from the British Library.

ISBN: 978-0-470-69726-9 (H/B)

Set in 10/12 pt, Times Roman by Thomson Digital, Noida, India Printed and bound in Great Britain by CPI Antony Rowe, Chippenham, Wiltshire

Thermodynamic Models for Industrial Applications

No man lives alone and no books are written in a vacuum either. Our families especially (in Denmark, The Netherlands and Greece) have deeply felt the consequences of the process of writing this book.

I (Georgios Kontogeorgis) would like to dedicate the book to my wife Olga for her patience, support, love and understanding – especially as, during the period of writing of this book, our daughter, Elena, was born.

I (Georgios Folas) would like to thank Georgios Kontogeorgis for our excellent collaboration in writing this monograph during the past two years. I am grateful to my family and wish to dedicate this book to my wife Athanasia for always inspiring and supporting me.

Preface

Thermodynamics plays an important role in numerous industries, both in the design of separation equipment and processes as well as for product design and optimizing formulations. Complex polar and associating molecules are present in many applications, for which different types of phase equilibria and other thermodynamic properties need to be known over wide ranges of temperature and pressure. Several applications also include electrolytes, polymers or biomolecules. To some extent, traditional activity coefficient models are being phased out, possibly with the exception of UNIFAC, due to its predictive character, as advances in computers and statistical mechanics favor use of equations of state. However, some of these 'classical' models continue to find applications, especially in the chemical, polymer and pharmaceutical industries. On the other hand, while traditional cubic equations of state are often not adequate for complex phase equilibria, over the past 20–30 years advanced thermodynamic models, especially equations of state, have been developed.

The purpose of this work is to present and discuss in depth both 'classical' and novel thermodynamic models which have found or can potentially be used for industrial applications. Following the first introductory part of two short chapters on the fundamentals of thermodynamics and intermolecular forces, the second part of the book (Chapters 3–6) presents the 'classical' models, such as cubic equations of state, activity coefficient models and their combination in the so-called EoS/G^E mixing rules. The advantages, major applications and reliability are discussed as well as the limitations and points of caution when these models are used for design purposes, typically within a commercial simulation package. Applications in the oil and gas and chemical sectors are emphasized but models suitable for polymers are also presented in Chapters 4–6.

The third part of the book (Chapters 7–14) presents several of the advanced models in the form of association equations of state which have been developed since the early 1990s and are suitable for industrial applications. While many of the principles and applications are common to a large family of these models, we have focused on two of the models (the CPA and PC–SAFT equations of state), largely due to their range of applicability and our familiarity with them. Extensive parameter tables for the two models are available in the two appendices on the companion website at www.wiley.com/go/Kontogeorgis. The final part of the book (Chapters 15–20) illustrates applications of thermodynamics in environmental science and colloid and surface chemistry and discusses models for mixtures containing electrolytes. Finally, brief introductions about the thermodynamic tools available for mixtures with biomolecules as well as the possibility of using quantum chemistry in engineering thermodynamics conclude the book.

The book is based on our extensive experience of working with thermodynamic models, especially the association equations of state, and in close collaboration with industry in the petroleum, energy, chemical and polymer sectors. While we feel that we have included several of the exciting developments in thermodynamic models with an industrial flavor, it has not been possible to include them all. We would like, therefore, to apologize in advance to colleagues and researchers worldwide whose contributions may not have been included or adequately discussed for reasons of economy. However, we are looking forward to receiving comments and suggestions which can lead to improvements in the future.

The book is intended both for engineers wishing to use these models in industrial applications (many of them already available in commercial simulators, as stand-alone or in CAPE-Open compliant format) and for students, researchers and academics in the field of applied thermodynamics. The contents could also be used in

graduate courses on applied chemical engineering thermodynamics, provided that a course on the fundamentals of applied thermodynamics has been previously followed. For this reason, problems are provided on the companion website at www.wiley.com/go/Kontogeorgis. Answers to selected problems are available, while a full solution manual is available from the authors.

Georgios M. Kontogeorgis Copenhagen, Denmark Georgios K. Folas Amsterdam, The Netherlands

About the Authors

Georgios M. Kontogeorgis has been a professor at the Technical University of Denmark (DTU), Department of Chemical and Biochemical Engineering, since January 2008. Prior to that he was associate professor at the same university, a position he had held since August 1999. He has an MSc in Chemical Engineering from the Technical University of Athens (1991) and a PhD from DTU (1995). His current research areas are energy (especially thermodynamic models for the oil and gas industry), materials and nanotechnology (especially polymers – paints, product design, and colloid and surface chemistry), environment (design CO₂ capture units, fate of chemicals, migration of plasticizers) and biotechnology. He is the author of over 100 publications in international journals and co-editor of one monograph. He is the recipient of the Empirikion Foundation Award for 'Achievements in Chemistry' (1999, Greece) and of the Dana Lim Price (2002, Denmark).

Georgios K. Folas was appointed as technologist in the distillation and thermal conversion department, Shell Global Solutions (The Netherlands) in January 2009. He previously worked as Senior Engineer (Facilities and Flow Assurance) in Aker Engineering & Technology AS (Oslo, Norway). He has an MSc in Chemical Engineering from the Technical University of Athens (2000) and an industrial PhD from DTU (2006), in collaboration with Statoilhydro (Norway). He is the author of 15 publications in international journals and the recipient of the Director Peter Gorm-Petersens Award for his PhD work.

Acknowledgments

We wish to thank all our students and colleagues and especially the faculty members of IVC-SEP Research Center, at the Department of Chemical and Biochemical Engineering of the Technical University of Denmark (DTU), for the many inspiring discussions during the past 10 years which have largely contributed to the shaping of this book. Our very special thanks go to Professor Michael L. Michelsen for the endless discussions we have enjoyed with him on thermodynamics.

In the preparation of this book we have been assisted by many colleagues, friends, current and former students. Some have read chapters of the book or provided material prior to publication, while we have had extensive discussions with others. We would particularly like to thank Professors J. Coutinho, G. Jackson, I. Marrucho, J. Mollerup, G. Sadowski, L. Vega and N. von Solms, Doctors M. Breil, H. Cheng, Ph. Coutsikos, J.-C. de Hemptinne, I. Economou, J. Gabrielsen, A. Grenner, E. Karakatsani I. Kouskoumvekaki, Th. Lindvig, E. Solbraa, N. Sune, A. Tihic, I. Tsivintzelis and W. Yan, as well as the current PhD and MSc students of IVC-SEP, namely A. Avlund, J. Christensen, L. Faramarzi, F. Leon, B. Maribo-Mogensen and A. Sattar-Dar.

All contributions have been highly valuable and we are deeply grateful for them.

List of Abbreviations

AAD % percentage average absolute deviation:

 $AAD \% = \frac{1}{NP} \sum_{i=1}^{NP} ABS \left(\frac{x_{\exp,i} - x_{calc,i}}{x_{\exp,i}} \right) \cdot 100$

for a property x

AM arithmetic mean rule (for the cross co-volume parameter, b_{12})

AMP 2-amino-2-methyl-1-propanol ATPS aqueous two-phase systems BCF bioconcentration factor

BR butadiene rubber (polybutadiene)
BTEX benzene-toluene-ethylbenzene-xylene
CCC critical coagulation concentration

CDI chronic daily intake
CK-SAFT Chen-Kreglewski SAFT
CMC critical micelle concentration

Comb-FV combinatorial free volume (effect, term, contributions)

COSMO conductor-like screening model

CPA cubic-plus-association
CPP critical packing parameter
CS Carnahan-Starling

CSP corresponding states principle

CTAB hexadecyl trimethylammonium bromide

DBE dibutyl ether

DDT dichlorodiphenyltrichloroethane

DEA diethanolamine DEG diethylene glycol

DFT density functional theory

DH Debye-Hückel DiPE diisopropyl ether

DIPPR Design Institute for Physical Property (database)
DLVO Derjaguin–Landau–Verwey–Overbeek (theory)

DME dimethyl ether DPE dipropyl ether

ECR Elliott's combining rule

EoS Equation of state

EPA Environmental Protection Agency

EPE ethyl propyl ether

ESD Elliott–Suresh–Donohue (EoS)

EU European Union

FCC Face-centered cubic structure (close packed, Z = 12)

FH Flory-Huggins FOG first-order groups FV Free volume

GC group contribution (methods, principle) GCA group contribution plus association

group contribution of Vidal and Michelsen mixing rules **GCVM**

GERG Group Européen de Recherche Gazière

GLC gas-liquid chromatography **GLE** gas-liquid equilibria

geometric mean rule (for the cross-energy parameter, a_{12}) GM

HB hydrogen bonds/bonding **HCB** hexachlorobenzene HF Hartree-Fock

HIC hydrophobic interaction chromatography

hydrophilic-lipophilic balance HLB Hansen solubility parameters **HSP** HV Huron-Vidal mixing rule **IEC** ion-exchange chromatography low-angle light scattering LALS

LC local composition (models, principle, etc.)

LCST lower critical solution temperature

LCVM linear combination of Vidal and Michelsen mixing rules

LGT linear gradient theory

LI Lennard-Jones LLE liquid-liquid equilibria

LR Lewis-Randall; long range

mCR-1 modified CR-1 combining rule (for the CPA EoS), equation (9.10)

MC-SRK Mathias-Copeman SRK **MDEA** methyl diethanolamine **MEA** monoethanolamine MEG (mono)ethylene glycol MEK methyl ethyl ketone

MHV1 modified Huron-Vidal first order MHV2 modified Huron-Vidal second order

MM McMillan-Mayer MO molecular orbital

MSA mean spherical approximation

MW molecular weight

NLF-HB lattice-fluid hydrogen bonding (EoS) NP number of experimental points

NRHB non-random hydrogen bonding (EoS)

NRTL non-random two liquid

PAHs polynuclear aromatic hydrocarbons

PBA poly(butyl acrylate) **PBD** polybutadiene

PBMA poly(butyl methacrylate) **PCBs** polychlorinated biphenyls PC-SAFT perturbed-chain SAFT
PDH Pitzer-Debye-Hückel
PDMS poly(dimethyl siloxane)
PEA poly(ethyl acrylate)
PEG (poly)ethylene glycol
PIB polyisobutylene

PIPMA poly(isopropyl methacrylate)

PM primitive model PMA poly(methyl acrylate) PMMA poly(methyl methacrylate)

PP polypropylene
PPA poly(propyl acrylate)
PR Peng-Robinson
PS polystyrene

PSRK predictive Soave-Redlich-Kwong

PVAc poly(vinyl acetate)
PVAL poly(vinyl alcohol)
PVC poly(vinyl chloride)

PVT pressure, volume, temperature

PZ piperazine

QC quantum chemistry QM quantum mechanics

QSAR quantitative structure-activity relationships

RDF radial distribution function

RK Redlich-Kwong

RP-HPLC reversed-phase high-pressure liquid chromatography

RPM restrictive primitive model RST regular solution theory

SAFT statistical associating fluid theory
SCFE supercritical fluid extraction
SDS sodium dodecyl sulfate
SGE solid–gas equilibria
SL Sanchez–Lacombe
SOG second-order groups

solid-liquid equilibria

SR short range

SLE

SRK Soave-Redlich-Kwong (EoS)
SVC second virial coefficients
SWP Sako-Wu-Prausnitz (EoS)
TEG triethylene glycol

TEG triethylene glycol THF tetrahydrofurane

UCST upper critical solution temperature
UMR-PR universal mixing rule (with the PR EoS)

UNIFAC universal quasi-chemical functional group activity coefficient

UNIQUAC universal quasi-chemical vdW van der Waals (EoS)

vdW1f vdW one-fluid (mixing rules)

VLE vapor-liquid equilibria

VLLE vapor-liquid-liquid equilibria VOR volatile organic compound

VR variable range

VTPR volume-translated Peng-Robinson (EoS)

WHO World Health Organization

WS Wong-Sandler

 Δy

WWF World Wide Fund for Nature $\Delta P\%$ average absolute percentage error:

$$\Delta P\% = \frac{1}{NP} \sum_{i=1}^{NP} ABS \left(\frac{P_{exp,i} - P_{calc,i}}{P_{exp,i}} \right) \cdot 100$$

in bubble point pressure P of component iaverage absolute percentage deviation:

$$\Delta y = \frac{1}{NP} \sum_{i=1}^{NP} ABS(y_{exp,i} - y_{calc,i})$$

in the vapor phase mole fraction of component i

 $\Delta \rho \%$ average absolute percentage deviation:

$$\Delta \rho \% = \frac{1}{NP} \sum_{i=1}^{NP} ABS \left(\frac{\rho_{exp,i} - \rho_{calc,i}}{\rho_{exp,i}} \right) \cdot 100$$

in the liquid density of component i

List of Symbols

```
energy term in the SRK term (bar 1<sup>2</sup>/mol<sup>2</sup>) or activity or particle radius
 a
               surfactant head area
a_0
               non-randomness parameter of molecules of type i around a molecule of type j
a_{ij}
a_{mk}, a_{mk,1},
   a_{mk,2},
               UNIFAC temperature-dependent parameters, K
   a_{mk,3}
               surface area or Helmholtz energy or Hamaker constant
A
A_{eff}
               effective Hamaker constant
               site A in molecule i
A_i
               Hamaker constant of particle/surface i-i
A_{ii}
               parameter in Langmuir constant, K/bar
A_{m,i}
               specific surface area, typically in m<sup>2</sup>/g
A_{spec}
               area occupied by a gas molecule
A_0
ã
               reduced Helmholtz energy
               parameter in the energy term of CPA (bar L<sup>2</sup>/mol<sup>2</sup>) or area of the head of a surfactant molecule
a_0
               parameters in GERG model for water
A_1, A_2, A_3
A123
               Hamaker constant between particles (or surfaces) 1 and 3 in medium 2
b
               co-volume parameter (l/mol) of cubic equations of state
В
               second virial coefficient
B_i
               site B in molecule j
               parameter in Langmuir constant, K
B_{m,i}
               molar concentration (often in mol/l or mol/m<sup>3</sup>) or concentration (in general) or the London
               coefficient
               parameter in the energy term of CPA
c_1
C_{m,i}
               Langmuir constant for component i in cavity m
d
               density (eq. 4.29) or temperature-dependent diameter
D
               Diffusion coefficient or dielectric constant
E
               modulus of Elasticity
f
               fugacity, bar
f
               fugacity, bar
F
               Force
G
               Gibbs energy
G^E, g^E
               excess Gibbs energy
g_{ji}/R
               Huron-Vidal energy parameter, characteristic of the j-i interaction, K
               radial distribution function
g
h
               Planck's constant, 6.626 \times 10^{-34} \,\mathrm{J}\,\mathrm{s}
H
               enthalpy
H
               interparticle or interface distance or (Hi) Henry's law constant
```

first ionization potential, J or ionic strength

I

k Boltzmann's constant, J/K
 K Distribution factor e.g. Table 1.3
 K chemical equilibrium constant

 k_{12}, k_{ii} binary interaction parameter (in equations of state)

K_{OW} octanol-water partition coefficient

K^{ref} chemical equilibrium constant at the reference temperature

l parameter in the Hansen–Beerbower–Skaarup equation (eq. 18.8) or distance between charges

in a molecule (eq. 2.2a or 2.2b)

 $egin{array}{ll} l_c & \mbox{length of a surfactant molecule} \ m & \mbox{segment number } or \mbox{ molality} \ MW, M & \mbox{molecular weight (molar mass)} \ \end{array}$

 N_A Avogadro's number = 6.0225×10^{23} mol/mol

 N_{agg} aggregation (or aggregate) number

n refractive index n_T true number of moles n_o apparent number of moles

P pressure, bar

P^{sat} saturated vapor pressure

q charge

Q quadrupole moment, C m²

 Q_k surface area parameter for group k

Ow van der Waals surface area

R gas constant, bar l/mol/K or molecular radius

r radial distance from the center of the cavity, Å or intermolecular distance

 R_i the radius of cage i, Å

 R_k volume parameter for group k

S Harkins spreading coefficient or entropy

T temperature, K

 T_c critical temperature, K

 $T_{m,i}$ melting temperature of the component i, K

 T_r reduced temperature T^{ref} reference temperature, K

 T_0 arbitrary temperature for linear UNIFAC (in the temperature dependency of the

energy parameters), see Table 5.7

U composition variable or internal energy

 V_A (van der Waals) potential energy

V reduced volume V hard-core volume V volume

 V_c critical volume V_f free volume

 V_g gas volume at STP conditions (= 22414 cm³/mol)

 \bar{V}_i partial molar volume

 V_m molar volume (L mol⁻¹) or maximum volume occupied by a gas (in adsorption in a solid)

 V_W^{ICE} molar volume of ice, 1 mol⁻¹

 V_w van der Waals volume W(r) cell potential function, J

X monomer fraction

 X_{A_i} fraction of A-sites of molecule i that are not bonded

 x_i liquid mole fraction of component i y reduced density, eq. 2.11 or 9.12 vapor mole fraction of component i

Z compressibility factor or co-ordination number

 Z_i ionic valence

 ΔCp_i heat capacity change of the component i at the melting temperature, J/mol/K

 ΔG Gibbs free energy change (also of micellization)

 ΔH enthalpy change (also of micellization)

 $\Delta h_w^{EH-L_0}$ enthalpy differences between the empty hydrate lattice and liquid water, J/mol

 ΔH_i^{fus} heat of fusion of the component i at the melting temperature, J/mol

 $\Delta\mu_w^0$ chemical potential difference between the empty hydrate and pure liquid water, J/mol

 ΔS entropy change (also of micellization)

 $\Delta V_w^{EH-L_0}$ molar volume differences between the empty hydrate lattice and liquid water, J/mol

Greek letters

 α_0 electronic polarizability

α polarizability or Kamlet acid parameter or distance of closest approach (Chapter 15)

 α reduced energy $(=\frac{\alpha}{bRT})$, eq. (3.16) & Table 6.3

β Kamlet base parameter

 $\beta^{A_iB_j}$ association volume parameter between site A in molecule i and site B in molecule j

(dimensionless) [in CPA]

 γ mole-based activity coefficient or surface or interfacial tension γ_i^C combinatorial part of activity coefficient for the component i residual part of activity coefficient for the component i

 γ^{∞} infinite dilution coefficient

 $\Gamma(r)$ potential energy–distance function

 Γ_k activity coefficient of group k at mixture composition or adsorption of compound (k)

 Γ_k^i activity coefficient of group k at a group composition of pure component i

 Γ_{max} maximum adsorption (often in mol/g)

δ solubility parameter, $(J/cm^3)^{1/2}$ Δ association strength, I/mol

ε dispersion energy parameter, association energy, J

 ε_0 permittivity of vacuum (free space), $8.854 \times 10^{-12} \, \text{C}^2 / \text{J/m}$

 ε_r dielectric constant (dimensionless)

 $\varepsilon^{A_iB_j}$ association energy parameter between site A in molecule i and site B in molecule j, bar l/mol

 ζ partial volume fraction or zeta potential

 η the reduced fluid density of CPA or volume fraction of PC-SAFT

 ϑ contact angle or surface area fraction

 θ_i surface area fraction for component i in the mixture

 Θ occupancy of cavity m by component i

 κ association volume of PC-SAFT or Debye screening length, eq. 15.25

 μ dipole moment in Debye or (μ_i) chemical potential

v main electronic absorption frequency in the UV region (about 3×10^{15} Hz)

 ν_i number of cavities of type i

 v_{ki} number of groups of type k in molecule i

 π surface pressure $(= \gamma_w - \gamma)$

 $\Delta \varphi$ electrical potential difference, eq. 19.35

 ψ_0 surface potential ρ molar density, mol/l segment diameter, Å

 τ_{ii} Boltzmann factor (in local composition models), eq. (5.1)

Φ (volume/segment) fraction

 $\hat{\varphi}_i$ fugacity coefficient of component i in a mixture

 ω acentric factor

 χ_{12} Flory-Huggins (interaction) parameter Ω weight-based activity coefficient

 Ω_1^{∞} infinite dilution weight-based activity coefficient

Superscripts and subscripts

AB site A-site B

 A_iB_i site A in molecule i with site B in molecule i

A, B, C, D site indicators A anion or attractive AB acid-base interactions

Adh, A adhesion attr attractive assoc association

boiling point/temperature

c or crit critical

C cation or combinational

chem chemical
cal calculated value
Coh cohesion
comb combinatorial

comb-fy combinatorial free volume

d or disp dispersion
DP data points
DH Debye-Hückel

E excess

EH empty hydrate eq equilibrium excl excluded

exp experimental value

fv, FV free volume f, fus fusion

FH Flory-Huggins

 $g ext{ or } gas$ gas H hydrate

h or hb, HB hydrogen bonding

hc hard chain